Normalized defining polynomial
\( x^{18} - 4 x^{17} - 3 x^{16} + 40 x^{15} - 54 x^{14} - 116 x^{13} + 358 x^{12} + 8 x^{11} - 904 x^{10} + 556 x^{9} + 1244 x^{8} - 1152 x^{7} - 1146 x^{6} + 1076 x^{5} + 690 x^{4} - 512 x^{3} - 169 x^{2} + 104 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-264502279525614257635328=-\,2^{16}\cdot 37^{6}\cdot 1163^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 1163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{5} - \frac{3}{8} a^{4} + \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{40} a^{14} - \frac{1}{40} a^{13} + \frac{1}{10} a^{12} - \frac{1}{20} a^{11} - \frac{3}{40} a^{10} + \frac{1}{40} a^{9} - \frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{1}{40} a^{6} - \frac{3}{40} a^{5} - \frac{1}{2} a^{4} + \frac{9}{20} a^{3} - \frac{13}{40} a^{2} + \frac{3}{40} a + \frac{3}{10}$, $\frac{1}{40} a^{15} - \frac{1}{20} a^{13} - \frac{3}{40} a^{12} - \frac{1}{8} a^{11} - \frac{1}{20} a^{10} + \frac{1}{20} a^{9} - \frac{7}{40} a^{8} - \frac{9}{40} a^{7} - \frac{1}{10} a^{6} + \frac{1}{20} a^{5} + \frac{3}{40} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{7}{40}$, $\frac{1}{760} a^{16} + \frac{3}{760} a^{15} - \frac{1}{152} a^{14} - \frac{13}{380} a^{13} - \frac{13}{380} a^{12} - \frac{61}{760} a^{11} + \frac{7}{152} a^{10} - \frac{27}{380} a^{9} - \frac{21}{95} a^{8} + \frac{33}{760} a^{7} + \frac{7}{40} a^{6} - \frac{91}{380} a^{5} + \frac{177}{380} a^{4} + \frac{121}{760} a^{3} + \frac{349}{760} a^{2} - \frac{141}{380} a + \frac{75}{152}$, $\frac{1}{984339080} a^{17} - \frac{72025}{196867816} a^{16} - \frac{7164949}{984339080} a^{15} - \frac{2021901}{984339080} a^{14} + \frac{4753471}{492169540} a^{13} - \frac{9910546}{123042385} a^{12} + \frac{43913603}{984339080} a^{11} + \frac{118864541}{984339080} a^{10} + \frac{34049357}{492169540} a^{9} - \frac{2476019}{492169540} a^{8} - \frac{70649191}{984339080} a^{7} + \frac{213483989}{984339080} a^{6} - \frac{10939619}{98433908} a^{5} - \frac{57425747}{123042385} a^{4} - \frac{397319799}{984339080} a^{3} + \frac{177197371}{984339080} a^{2} - \frac{217763419}{984339080} a + \frac{42395519}{196867816}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 181638.102013 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 22 conjugacy class representatives for t18n314 |
| Character table for t18n314 is not computed |
Intermediate fields
| 3.3.148.1, 6.4.25474352.2, 9.7.15080816384.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 1163 | Data not computed | ||||||