Normalized defining polynomial
\( x^{18} - 7 x^{17} + 18 x^{16} - 40 x^{15} + 68 x^{14} + 82 x^{13} - 352 x^{12} + 235 x^{11} - 341 x^{10} + 311 x^{9} + 972 x^{8} + 494 x^{7} - 2963 x^{6} - 119 x^{5} + 2375 x^{4} - 477 x^{3} - 364 x^{2} + 139 x - 13 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2614027694709806488366183699=-\,19\cdot 37^{4}\cdot 151^{4}\cdot 613^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 37, 151, 613$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2525185813496640124253431} a^{17} - \frac{434910699176112106009431}{2525185813496640124253431} a^{16} - \frac{886358008946668719250676}{2525185813496640124253431} a^{15} - \frac{841155152809964656284317}{2525185813496640124253431} a^{14} + \frac{670439533405483566101394}{2525185813496640124253431} a^{13} + \frac{1040621338463817233421565}{2525185813496640124253431} a^{12} - \frac{655736932160234772426743}{2525185813496640124253431} a^{11} - \frac{423658742307258251247829}{2525185813496640124253431} a^{10} + \frac{66279704583313043089595}{2525185813496640124253431} a^{9} + \frac{455638273757025105216789}{2525185813496640124253431} a^{8} + \frac{1050043229414870089687021}{2525185813496640124253431} a^{7} - \frac{974869104687361866318771}{2525185813496640124253431} a^{6} + \frac{1007401549802246411469169}{2525185813496640124253431} a^{5} + \frac{391855629370884561381472}{2525185813496640124253431} a^{4} - \frac{152998473299778088566038}{2525185813496640124253431} a^{3} - \frac{994820014838016654603994}{2525185813496640124253431} a^{2} - \frac{989240582962497232504076}{2525185813496640124253431} a + \frac{1214965041599887734406208}{2525185813496640124253431}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41157694.9045 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 92897280 |
| The 168 conjugacy class representatives for t18n966 are not computed |
| Character table for t18n966 is not computed |
Intermediate fields
| 9.9.11729467378561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | $18$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.7.0.1 | $x^{7} - 8 x + 4$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 19.7.0.1 | $x^{7} - 8 x + 4$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $151$ | 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 151.4.2.2 | $x^{4} - 151 x^{2} + 273612$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 151.4.2.2 | $x^{4} - 151 x^{2} + 273612$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 151.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 151.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 613 | Data not computed | ||||||