Properties

Label 18.12.258...864.1
Degree $18$
Signature $[12, 3]$
Discriminant $-2.582\times 10^{26}$
Root discriminant \(29.33\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^2:C_{18}$ (as 18T26)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 54*x^14 + 42*x^12 + 603*x^10 - 1539*x^8 + 1368*x^6 - 450*x^4 + 27*x^2 + 1)
 
gp: K = bnfinit(y^18 - 54*y^14 + 42*y^12 + 603*y^10 - 1539*y^8 + 1368*y^6 - 450*y^4 + 27*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 54*x^14 + 42*x^12 + 603*x^10 - 1539*x^8 + 1368*x^6 - 450*x^4 + 27*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 54*x^14 + 42*x^12 + 603*x^10 - 1539*x^8 + 1368*x^6 - 450*x^4 + 27*x^2 + 1)
 

\( x^{18} - 54x^{14} + 42x^{12} + 603x^{10} - 1539x^{8} + 1368x^{6} - 450x^{4} + 27x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[12, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-258151783382020583032356864\) \(\medspace = -\,2^{18}\cdot 3^{44}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(29.33\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{7/4}3^{22/9}\approx 49.32861169414063$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{1970958043}a^{16}+\frac{680001050}{1970958043}a^{14}-\frac{698369646}{1970958043}a^{12}+\frac{881856185}{1970958043}a^{10}+\frac{591077472}{1970958043}a^{8}+\frac{400531092}{1970958043}a^{6}-\frac{411694146}{1970958043}a^{4}+\frac{648557274}{1970958043}a^{2}+\frac{939046168}{1970958043}$, $\frac{1}{1970958043}a^{17}+\frac{680001050}{1970958043}a^{15}-\frac{698369646}{1970958043}a^{13}+\frac{881856185}{1970958043}a^{11}+\frac{591077472}{1970958043}a^{9}+\frac{400531092}{1970958043}a^{7}-\frac{411694146}{1970958043}a^{5}+\frac{648557274}{1970958043}a^{3}+\frac{939046168}{1970958043}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{359402940}{1970958043}a^{17}+\frac{99977449}{1970958043}a^{15}-\frac{19308685533}{1970958043}a^{13}+\frac{9782623899}{1970958043}a^{11}+\frac{215644500610}{1970958043}a^{9}-\frac{493236135597}{1970958043}a^{7}+\frac{397121550498}{1970958043}a^{5}-\frac{126959471407}{1970958043}a^{3}+\frac{13457256054}{1970958043}a$, $\frac{181178343}{1970958043}a^{17}+\frac{177828305}{1970958043}a^{15}-\frac{9599158803}{1970958043}a^{13}-\frac{1782765666}{1970958043}a^{11}+\frac{107009520446}{1970958043}a^{9}-\frac{174905319288}{1970958043}a^{7}+\frac{81181492281}{1970958043}a^{5}-\frac{1002580072}{1970958043}a^{3}-\frac{5967056259}{1970958043}a$, $\frac{283521248}{1970958043}a^{16}+\frac{185031731}{1970958043}a^{14}-\frac{15155150424}{1970958043}a^{12}+\frac{2049401918}{1970958043}a^{10}+\frac{170517699272}{1970958043}a^{8}-\frac{325490328062}{1970958043}a^{6}+\frac{194860017189}{1970958043}a^{4}-\frac{29701335052}{1970958043}a^{2}+\frac{293368495}{1970958043}$, $\frac{102342905}{1970958043}a^{16}+\frac{7203426}{1970958043}a^{14}-\frac{5555991621}{1970958043}a^{12}+\frac{3832167584}{1970958043}a^{10}+\frac{63508178826}{1970958043}a^{8}-\frac{150585008774}{1970958043}a^{6}+\frac{113678524908}{1970958043}a^{4}-\frac{26727796937}{1970958043}a^{2}+\frac{347550625}{1970958043}$, $\frac{33042823}{1970958043}a^{16}+\frac{71715076}{1970958043}a^{14}-\frac{1692591906}{1970958043}a^{12}-\frac{2328287958}{1970958043}a^{10}+\frac{18273838782}{1970958043}a^{8}-\frac{11607043877}{1970958043}a^{6}-\frac{17889914889}{1970958043}a^{4}+\frac{19188843308}{1970958043}a^{2}-\frac{2937029575}{1970958043}$, $\frac{56547586}{1970958043}a^{16}+\frac{89308542}{1970958043}a^{14}-\frac{2991698755}{1970958043}a^{12}-\frac{2415869549}{1970958043}a^{10}+\frac{34512248487}{1970958043}a^{8}-\frac{32420114976}{1970958043}a^{6}-\frac{21877492133}{1970958043}a^{4}+\frac{24347402127}{1970958043}a^{2}-\frac{803667040}{1970958043}$, $\frac{248896287}{1970958043}a^{17}-\frac{56324523}{1970958043}a^{15}-\frac{13415523127}{1970958043}a^{13}+\frac{13598799745}{1970958043}a^{11}+\frac{146577127564}{1970958043}a^{9}-\frac{421229700015}{1970958043}a^{7}+\frac{436119778574}{1970958043}a^{5}-\frac{173789266522}{1970958043}a^{3}+\frac{16689938415}{1970958043}a$, $\frac{332073948}{1970958043}a^{17}+\frac{417919690}{1970958043}a^{15}-\frac{17572254427}{1970958043}a^{13}-\frac{8279699854}{1970958043}a^{11}+\frac{198708574840}{1970958043}a^{9}-\frac{261988696687}{1970958043}a^{7}+\frac{24237908305}{1970958043}a^{5}+\frac{69305071141}{1970958043}a^{3}-\frac{9029226480}{1970958043}a$, $\frac{181178343}{1970958043}a^{17}-\frac{234375891}{1970958043}a^{16}+\frac{177828305}{1970958043}a^{15}-\frac{273780261}{1970958043}a^{14}-\frac{9599158803}{1970958043}a^{13}+\frac{12383954827}{1970958043}a^{12}-\frac{1782765666}{1970958043}a^{11}+\frac{4656889932}{1970958043}a^{10}+\frac{107009520446}{1970958043}a^{9}-\frac{138440399076}{1970958043}a^{8}-\frac{174905319288}{1970958043}a^{7}+\frac{199090595919}{1970958043}a^{6}+\frac{81181492281}{1970958043}a^{5}-\frac{58650182145}{1970958043}a^{4}-\frac{1002580072}{1970958043}a^{3}-\frac{13488530607}{1970958043}a^{2}-\frac{5967056259}{1970958043}a-\frac{986112660}{1970958043}$, $\frac{292412214}{1970958043}a^{17}+\frac{54182130}{1970958043}a^{16}-\frac{93363437}{1970958043}a^{15}+\frac{181178343}{1970958043}a^{14}-\frac{15855816012}{1970958043}a^{13}-\frac{2748006715}{1970958043}a^{12}+\frac{17299499166}{1970958043}a^{11}-\frac{7323509343}{1970958043}a^{10}+\frac{175956244604}{1970958043}a^{9}+\frac{30889058724}{1970958043}a^{8}-\frac{507751023159}{1970958043}a^{7}+\frac{23623222376}{1970958043}a^{6}+\frac{502491670182}{1970958043}a^{5}-\frac{100784165448}{1970958043}a^{4}-\frac{174772259769}{1970958043}a^{3}+\frac{56799533781}{1970958043}a^{2}+\frac{4243303794}{1970958043}a-\frac{1510620605}{1970958043}$, $\frac{167385165}{1970958043}a^{17}-\frac{220582713}{1970958043}a^{16}+\frac{80439375}{1970958043}a^{15}-\frac{176391331}{1970958043}a^{14}-\frac{8931085306}{1970958043}a^{13}+\frac{11715881330}{1970958043}a^{12}+\frac{2859985335}{1970958043}a^{11}+\frac{14138931}{1970958043}a^{10}+\frac{98752143070}{1970958043}a^{9}-\frac{130183021700}{1970958043}a^{8}-\frac{213605483481}{1970958043}a^{7}+\frac{237790760112}{1970958043}a^{6}+\frac{164020301829}{1970958043}a^{5}-\frac{141488991693}{1970958043}a^{4}-\frac{34324257755}{1970958043}a^{3}+\frac{19833147076}{1970958043}a^{2}-\frac{8227839600}{1970958043}a+\frac{1274670681}{1970958043}$, $\frac{512522103}{1970958043}a^{17}+\frac{365368195}{1970958043}a^{16}-\frac{318840759}{1970958043}a^{15}+\frac{289147974}{1970958043}a^{14}-\frac{28068889086}{1970958043}a^{13}-\frac{19415545496}{1970958043}a^{12}+\frac{38283953047}{1970958043}a^{11}+\frac{73128644}{1970958043}a^{10}+\frac{316317058862}{1970958043}a^{9}+\frac{215837333507}{1970958043}a^{8}-\frac{973411440369}{1970958043}a^{7}-\frac{392854197178}{1970958043}a^{6}+\frac{964419552336}{1970958043}a^{5}+\frac{239906580860}{1970958043}a^{4}-\frac{326626039304}{1970958043}a^{3}-\frac{49880861904}{1970958043}a^{2}+\frac{14860263678}{1970958043}a-\frac{489777492}{1970958043}$, $\frac{266942920}{1970958043}a^{17}-\frac{794715607}{1970958043}a^{16}+\frac{572502259}{1970958043}a^{15}-\frac{838145470}{1970958043}a^{14}-\frac{13863751093}{1970958043}a^{13}+\frac{42066732623}{1970958043}a^{12}-\frac{19202502112}{1970958043}a^{11}+\frac{11009277955}{1970958043}a^{10}+\frac{155689806631}{1970958043}a^{9}-\frac{469544630405}{1970958043}a^{8}-\frac{69116828121}{1970958043}a^{7}+\frac{728149948192}{1970958043}a^{6}-\frac{185989551277}{1970958043}a^{5}-\frac{296899445738}{1970958043}a^{4}+\frac{114902072374}{1970958043}a^{3}+\frac{4073233686}{1970958043}a^{2}-\frac{1946522723}{1970958043}a+\frac{1238979707}{1970958043}$, $\frac{262689465}{1970958043}a^{17}-\frac{58178221}{1970958043}a^{16}+\frac{41064407}{1970958043}a^{15}-\frac{199896094}{1970958043}a^{14}-\frac{14083596624}{1970958043}a^{13}+\frac{2928445296}{1970958043}a^{12}+\frac{8956048744}{1970958043}a^{11}+\frac{8134234444}{1970958043}a^{10}+\frac{154834504940}{1970958043}a^{9}-\frac{32165531433}{1970958043}a^{8}-\frac{382529535822}{1970958043}a^{7}-\frac{28388162781}{1970958043}a^{6}+\frac{353280969026}{1970958043}a^{5}+\frac{101493424462}{1970958043}a^{4}-\frac{140467588839}{1970958043}a^{3}-\frac{49261297080}{1970958043}a^{2}+\frac{18950721756}{1970958043}a+\frac{2471991189}{1970958043}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 5317286.48059 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{3}\cdot 5317286.48059 \cdot 1}{2\cdot\sqrt{258151783382020583032356864}}\cr\approx \mathstrut & 0.168121033882 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 54*x^14 + 42*x^12 + 603*x^10 - 1539*x^8 + 1368*x^6 - 450*x^4 + 27*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 54*x^14 + 42*x^12 + 603*x^10 - 1539*x^8 + 1368*x^6 - 450*x^4 + 27*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 54*x^14 + 42*x^12 + 603*x^10 - 1539*x^8 + 1368*x^6 - 450*x^4 + 27*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 54*x^14 + 42*x^12 + 603*x^10 - 1539*x^8 + 1368*x^6 - 450*x^4 + 27*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2:C_{18}$ (as 18T26):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 72
The 24 conjugacy class representatives for $C_2^2:C_{18}$
Character table for $C_2^2:C_{18}$ is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 6.4.419904.1, \(\Q(\zeta_{27})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.9.0.1}{9} }^{2}$ $18$ $18$ ${\href{/padicField/13.9.0.1}{9} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{4}$ $18$ ${\href{/padicField/29.9.0.1}{9} }^{2}$ $18$ ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ ${\href{/padicField/41.9.0.1}{9} }^{2}$ $18$ $18$ ${\href{/padicField/53.2.0.1}{2} }^{6}{,}\,{\href{/padicField/53.1.0.1}{1} }^{6}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.18.18.116$x^{18} + 54 x^{16} + 128 x^{15} + 1192 x^{14} + 5296 x^{13} + 25360 x^{12} + 109760 x^{11} + 401024 x^{10} + 1311040 x^{9} + 3636352 x^{8} + 8885760 x^{7} + 18496384 x^{6} + 32649472 x^{5} + 49679104 x^{4} + 60578816 x^{3} + 57839360 x^{2} + 44080128 x + 26046976$$2$$9$$18$18T26$[2, 2, 2]^{9}$
\(3\) Copy content Toggle raw display Deg $18$$9$$2$$44$