Normalized defining polynomial
\( x^{18} - 2 x^{17} - 63 x^{16} + 73 x^{15} + 1067 x^{14} - 1568 x^{13} - 1713 x^{12} + 33318 x^{11} - 33070 x^{10} - 175938 x^{9} + 122606 x^{8} - 611526 x^{7} - 2183902 x^{6} - 1014344 x^{5} + 738530 x^{4} + 1258269 x^{3} + 1389471 x^{2} + 608941 x + 13733 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-233421106682227531424403935185726819646439=-\,3^{12}\cdot 107^{6}\cdot 1327^{3}\cdot 50033^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $198.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 107, 1327, 50033$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{2}{9} a^{9} + \frac{4}{9} a^{8} + \frac{1}{9} a^{7} + \frac{4}{9} a^{6} + \frac{1}{3} a^{5} - \frac{4}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{13} - \frac{1}{9} a^{11} - \frac{1}{9} a^{8} - \frac{4}{9} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a - \frac{1}{9}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{13} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{3} a^{9} + \frac{1}{9} a^{8} - \frac{2}{9} a^{6} - \frac{2}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{2}{9} a^{2} - \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{13626765928946839010150868783048855609177309817689} a^{17} + \frac{572529012708061168904464061377824872474917879168}{13626765928946839010150868783048855609177309817689} a^{16} - \frac{4872823329094679676763730275800470173081615019}{1514085103216315445572318753672095067686367757521} a^{15} + \frac{136974286294239392914998795721121591050906663970}{13626765928946839010150868783048855609177309817689} a^{14} + \frac{73329943373832500134849613900831034559278356050}{1514085103216315445572318753672095067686367757521} a^{13} + \frac{1412987130476387322311123625270979017770882439517}{13626765928946839010150868783048855609177309817689} a^{12} + \frac{1020981731859897670310907112312689327589095405392}{13626765928946839010150868783048855609177309817689} a^{11} - \frac{137068203670712176331452695837299702702420616098}{1514085103216315445572318753672095067686367757521} a^{10} - \frac{971599160929692011719481089310392489118272405039}{4542255309648946336716956261016285203059103272563} a^{9} + \frac{6418192173239281621166105446825071981540551558522}{13626765928946839010150868783048855609177309817689} a^{8} - \frac{1526239554691909614542759406740075563898745442498}{13626765928946839010150868783048855609177309817689} a^{7} - \frac{626710826553312505518470122031033571975574285412}{1514085103216315445572318753672095067686367757521} a^{6} - \frac{809735698191750911909283447703903353974533519910}{13626765928946839010150868783048855609177309817689} a^{5} - \frac{686944247389230660228827154348908953499284458210}{1514085103216315445572318753672095067686367757521} a^{4} + \frac{3318446430208130579488448709067873681981003833602}{13626765928946839010150868783048855609177309817689} a^{3} - \frac{5797400340652750857506822450314880612260983586655}{13626765928946839010150868783048855609177309817689} a^{2} + \frac{1737305263948344606730347692650904539835871553556}{4542255309648946336716956261016285203059103272563} a - \frac{142393012229286060618346035559182121147129669890}{1514085103216315445572318753672095067686367757521}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 141665061081000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2239488 |
| The 255 conjugacy class representatives for t18n945 are not computed |
| Character table for t18n945 is not computed |
Intermediate fields
| 3.3.321.1, 6.6.20523847855293.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.12.12.29 | $x^{12} + 3 x + 3$ | $12$ | $1$ | $12$ | 12T84 | $[9/8, 9/8]_{8}^{2}$ | |
| 107 | Data not computed | ||||||
| 1327 | Data not computed | ||||||
| 50033 | Data not computed | ||||||