Normalized defining polynomial
\( x^{18} - 3 x^{17} - 21 x^{16} + 53 x^{15} + 240 x^{14} - 615 x^{13} - 1151 x^{12} + 3330 x^{11} + 3693 x^{10} - 13002 x^{9} - 3324 x^{8} + 28392 x^{7} - 9030 x^{6} - 27888 x^{5} + 18930 x^{4} + 8196 x^{3} - 9480 x^{2} + 1584 x + 96 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-176663351039744555499007459584=-\,2^{8}\cdot 3^{24}\cdot 367^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{8} a^{11} - \frac{3}{8} a^{10} - \frac{1}{4} a^{9} + \frac{3}{8} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{1165611803702071254467728} a^{17} + \frac{58015277863460608829069}{1165611803702071254467728} a^{16} + \frac{27757240546050339931691}{1165611803702071254467728} a^{15} - \frac{67310799383086912137695}{1165611803702071254467728} a^{14} - \frac{1800975595827014584385}{291402950925517813616932} a^{13} + \frac{236685303711263430525785}{1165611803702071254467728} a^{12} + \frac{89157755181761666000813}{1165611803702071254467728} a^{11} + \frac{139376142410284987585869}{582805901851035627233864} a^{10} + \frac{293716866191769979874285}{1165611803702071254467728} a^{9} - \frac{147899958932527619084973}{582805901851035627233864} a^{8} + \frac{27563959778516742823683}{72850737731379453404233} a^{7} + \frac{42281611987284009602851}{145701475462758906808466} a^{6} + \frac{95197958847133308712449}{582805901851035627233864} a^{5} - \frac{54647637498760680589313}{145701475462758906808466} a^{4} + \frac{18223728191958465155281}{582805901851035627233864} a^{3} + \frac{109773490922646208913165}{291402950925517813616932} a^{2} - \frac{24215917868513982797440}{72850737731379453404233} a + \frac{21069526895354060847549}{72850737731379453404233}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 544953011.549 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 70 conjugacy class representatives for t18n487 are not computed |
| Character table for t18n487 is not computed |
Intermediate fields
| 3.3.1101.1, 6.4.43639236.1, 9.9.35026116351444.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | $18$ | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| $3$ | 3.6.11.3 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.12.13.4 | $x^{12} - 3 x^{10} + 3 x^{6} - 3 x^{5} + 3 x^{4} - 3 x^{2} - 3$ | $12$ | $1$ | $13$ | 12T36 | $[5/4, 5/4]_{4}^{2}$ | |
| 367 | Data not computed | ||||||