Properties

Label 18.12.1177388041...1847.1
Degree $18$
Signature $[12, 3]$
Discriminant $-\,7^{12}\cdot 83^{4}\cdot 167\cdot 181^{4}$
Root discriminant $41.21$
Ramified primes $7, 83, 167, 181$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T839

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 3, 126, -435, 481, 402, -1786, 2073, -726, -825, 1252, -707, 84, 136, -100, 38, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 38*x^16 - 100*x^15 + 136*x^14 + 84*x^13 - 707*x^12 + 1252*x^11 - 825*x^10 - 726*x^9 + 2073*x^8 - 1786*x^7 + 402*x^6 + 481*x^5 - 435*x^4 + 126*x^3 + 3*x^2 - 8*x + 1)
 
gp: K = bnfinit(x^18 - 9*x^17 + 38*x^16 - 100*x^15 + 136*x^14 + 84*x^13 - 707*x^12 + 1252*x^11 - 825*x^10 - 726*x^9 + 2073*x^8 - 1786*x^7 + 402*x^6 + 481*x^5 - 435*x^4 + 126*x^3 + 3*x^2 - 8*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 9 x^{17} + 38 x^{16} - 100 x^{15} + 136 x^{14} + 84 x^{13} - 707 x^{12} + 1252 x^{11} - 825 x^{10} - 726 x^{9} + 2073 x^{8} - 1786 x^{7} + 402 x^{6} + 481 x^{5} - 435 x^{4} + 126 x^{3} + 3 x^{2} - 8 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-117738804108043349358031051847=-\,7^{12}\cdot 83^{4}\cdot 167\cdot 181^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $41.21$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 83, 167, 181$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2385907} a^{16} - \frac{8}{2385907} a^{15} + \frac{830384}{2385907} a^{14} - \frac{1040734}{2385907} a^{13} - \frac{1172220}{2385907} a^{12} - \frac{910665}{2385907} a^{11} + \frac{914282}{2385907} a^{10} - \frac{746645}{2385907} a^{9} + \frac{448214}{2385907} a^{8} + \frac{1105015}{2385907} a^{7} - \frac{238086}{2385907} a^{6} + \frac{358634}{2385907} a^{5} + \frac{950612}{2385907} a^{4} - \frac{468769}{2385907} a^{3} + \frac{79192}{2385907} a^{2} - \frac{109207}{2385907} a - \frac{698063}{2385907}$, $\frac{1}{2385907} a^{17} + \frac{830320}{2385907} a^{15} + \frac{830524}{2385907} a^{14} + \frac{45536}{2385907} a^{13} - \frac{744797}{2385907} a^{12} + \frac{786683}{2385907} a^{11} - \frac{590110}{2385907} a^{10} - \frac{753132}{2385907} a^{9} - \frac{81087}{2385907} a^{8} - \frac{941594}{2385907} a^{7} + \frac{839853}{2385907} a^{6} - \frac{952130}{2385907} a^{5} - \frac{21594}{2385907} a^{4} + \frac{1100854}{2385907} a^{3} + \frac{524329}{2385907} a^{2} + \frac{814188}{2385907} a - \frac{812690}{2385907}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 188022990.765 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T839:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 165888
The 192 conjugacy class representatives for t18n839 are not computed
Character table for t18n839 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.9.26552265046321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ $18$ R ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ $18$ ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ $18$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
83Data not computed
167Data not computed
$181$$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$