Normalized defining polynomial
\( x^{18} - 9 x^{17} + 18 x^{16} + 30 x^{15} - 171 x^{14} + 261 x^{13} - 1245 x^{12} + 3753 x^{11} + 8163 x^{10} - 34437 x^{9} - 15525 x^{8} + 113427 x^{7} - 18810 x^{6} - 134514 x^{5} + 44307 x^{4} + 53649 x^{3} - 13284 x^{2} - 6318 x + 1026 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1114738225300440254480085369040896=-\,2^{12}\cdot 3^{36}\cdot 7^{12}\cdot 131\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{18} a^{14} - \frac{1}{6} a^{11} - \frac{1}{6} a^{8} - \frac{1}{6} a^{5}$, $\frac{1}{18} a^{15} + \frac{1}{3} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{90} a^{16} - \frac{1}{90} a^{14} + \frac{1}{15} a^{13} - \frac{1}{30} a^{12} - \frac{1}{6} a^{11} + \frac{2}{15} a^{10} - \frac{1}{10} a^{9} + \frac{13}{30} a^{8} - \frac{1}{3} a^{7} + \frac{1}{10} a^{6} + \frac{1}{30} a^{5} - \frac{1}{10} a^{4} - \frac{3}{10} a^{3} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{4175834607964684917501120462537450} a^{17} - \frac{11435908366205834549284030227151}{2087917303982342458750560231268725} a^{16} - \frac{6336849128818743689714748501923}{2087917303982342458750560231268725} a^{15} - \frac{53037924777490373153246829426296}{2087917303982342458750560231268725} a^{14} + \frac{3181842298378038959061809693234}{46398162310718721305568005139305} a^{13} - \frac{7591971655356704724440965002374}{695972434660780819583520077089575} a^{12} + \frac{1884067089276875363278776569472}{33141544507656229503977146528075} a^{11} - \frac{94328782475298195101352126343328}{695972434660780819583520077089575} a^{10} + \frac{16538894896153108154689417924084}{231990811553593606527840025696525} a^{9} - \frac{71967606798588230873090900713121}{231990811553593606527840025696525} a^{8} + \frac{100387622453057747111128054294759}{695972434660780819583520077089575} a^{7} + \frac{10367395756868417987699771145751}{139194486932156163916704015417915} a^{6} - \frac{1432575485054057589509184687317}{7953970681837495080954515166738} a^{5} + \frac{82807392395836468204621780024052}{231990811553593606527840025696525} a^{4} + \frac{52172282258249649214379255544588}{231990811553593606527840025696525} a^{3} - \frac{68017172269312862897251347087266}{231990811553593606527840025696525} a^{2} - \frac{3667109877834522154721562171468}{9279632462143744261113601027861} a + \frac{86039407046568068524500532638249}{231990811553593606527840025696525}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 224860263765 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.9.18.24 | $x^{9} + 3 x^{6} + 24 x^{3} + 9 x + 3$ | $9$ | $1$ | $18$ | $C_3^2 : C_6$ | $[3/2, 2, 5/2]_{2}$ |
| 3.9.18.24 | $x^{9} + 3 x^{6} + 24 x^{3} + 9 x + 3$ | $9$ | $1$ | $18$ | $C_3^2 : C_6$ | $[3/2, 2, 5/2]_{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $131$ | 131.2.0.1 | $x^{2} - x + 14$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 131.2.0.1 | $x^{2} - x + 14$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 131.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 131.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 131.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 131.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |