Properties

Label 18.12.1098011133...8319.1
Degree $18$
Signature $[12, 3]$
Discriminant $-\,7^{12}\cdot 53^{6}\cdot 71^{3}$
Root discriminant $27.97$
Ramified primes $7, 53, 71$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times S_3\times A_4$ (as 18T60)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -6, 58, -72, -344, 539, 886, -970, -1017, 491, 246, -205, -12, 52, 16, -6, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 4*x^17 - 6*x^16 + 16*x^15 + 52*x^14 - 12*x^13 - 205*x^12 + 246*x^11 + 491*x^10 - 1017*x^9 - 970*x^8 + 886*x^7 + 539*x^6 - 344*x^5 - 72*x^4 + 58*x^3 - 6*x^2 - 3*x + 1)
 
gp: K = bnfinit(x^18 - 4*x^17 - 6*x^16 + 16*x^15 + 52*x^14 - 12*x^13 - 205*x^12 + 246*x^11 + 491*x^10 - 1017*x^9 - 970*x^8 + 886*x^7 + 539*x^6 - 344*x^5 - 72*x^4 + 58*x^3 - 6*x^2 - 3*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 4 x^{17} - 6 x^{16} + 16 x^{15} + 52 x^{14} - 12 x^{13} - 205 x^{12} + 246 x^{11} + 491 x^{10} - 1017 x^{9} - 970 x^{8} + 886 x^{7} + 539 x^{6} - 344 x^{5} - 72 x^{4} + 58 x^{3} - 6 x^{2} - 3 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-109801113396081548259298319=-\,7^{12}\cdot 53^{6}\cdot 71^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 53, 71$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13078683144959531777} a^{17} - \frac{4392912443113215745}{13078683144959531777} a^{16} - \frac{227072458793486967}{13078683144959531777} a^{15} - \frac{1465832284694445501}{13078683144959531777} a^{14} + \frac{2624150388074937281}{13078683144959531777} a^{13} - \frac{2416134722208319705}{13078683144959531777} a^{12} + \frac{4658198730716889076}{13078683144959531777} a^{11} - \frac{2357540182317358748}{13078683144959531777} a^{10} - \frac{3197295907105873503}{13078683144959531777} a^{9} - \frac{2495569738504528925}{13078683144959531777} a^{8} + \frac{903622594888018532}{13078683144959531777} a^{7} - \frac{5066558961633164926}{13078683144959531777} a^{6} + \frac{6251253142034738}{13078683144959531777} a^{5} + \frac{3260095940166252065}{13078683144959531777} a^{4} + \frac{3143996613838011394}{13078683144959531777} a^{3} - \frac{2044814269459319617}{13078683144959531777} a^{2} - \frac{5978120434472650429}{13078683144959531777} a + \frac{534975733394090678}{13078683144959531777}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4387609.41051 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times S_3\times A_4$ (as 18T60):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 144
The 24 conjugacy class representatives for $C_2\times S_3\times A_4$
Character table for $C_2\times S_3\times A_4$ is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 3.3.2597.1, 6.4.170471.1, 9.9.17515230173.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
$53$53.6.0.1$x^{6} - x + 8$$1$$6$$0$$C_6$$[\ ]^{6}$
53.12.6.1$x^{12} + 2382032 x^{6} - 418195493 x^{2} + 1418519112256$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$71$71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.4.2.1$x^{4} + 1491 x^{2} + 609961$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$