Normalized defining polynomial
\( x^{18} - 8 x^{17} + 21 x^{16} - 15 x^{15} - 25 x^{14} + 82 x^{13} - 132 x^{12} + 80 x^{11} + 56 x^{10} - 131 x^{9} + 153 x^{8} - 99 x^{7} + 61 x^{6} - 93 x^{5} + 21 x^{4} + 62 x^{3} - 37 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-105226667788517176205647=-\,7^{15}\cdot 53^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{1067} a^{16} - \frac{273}{1067} a^{15} + \frac{126}{1067} a^{14} - \frac{169}{1067} a^{13} + \frac{283}{1067} a^{12} - \frac{277}{1067} a^{11} + \frac{47}{97} a^{10} - \frac{387}{1067} a^{9} + \frac{300}{1067} a^{8} - \frac{260}{1067} a^{7} - \frac{465}{1067} a^{6} + \frac{420}{1067} a^{5} + \frac{35}{1067} a^{4} - \frac{420}{1067} a^{3} - \frac{324}{1067} a^{2} + \frac{150}{1067} a - \frac{260}{1067}$, $\frac{1}{107779615141} a^{17} + \frac{47524573}{107779615141} a^{16} - \frac{44195865862}{107779615141} a^{15} - \frac{51927440935}{107779615141} a^{14} - \frac{24954646260}{107779615141} a^{13} + \frac{31132339559}{107779615141} a^{12} + \frac{43906983405}{107779615141} a^{11} + \frac{1576926063}{107779615141} a^{10} + \frac{27277217706}{107779615141} a^{9} + \frac{4727526249}{9798146831} a^{8} + \frac{27835571928}{107779615141} a^{7} + \frac{45645975271}{107779615141} a^{6} - \frac{8621058905}{107779615141} a^{5} + \frac{31184786951}{107779615141} a^{4} - \frac{34923039597}{107779615141} a^{3} - \frac{3793738873}{107779615141} a^{2} + \frac{45437430370}{107779615141} a - \frac{35370864648}{107779615141}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 91563.2420757 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_4$ (as 18T61):
| A solvable group of order 144 |
| The 30 conjugacy class representatives for $C_6\times S_4$ |
| Character table for $C_6\times S_4$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.2597.1, 6.4.47210863.1, 9.9.17515230173.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $53$ | 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 53.12.6.1 | $x^{12} + 2382032 x^{6} - 418195493 x^{2} + 1418519112256$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |