Properties

Label 18.12.1035144515...9616.4
Degree $18$
Signature $[12, 3]$
Discriminant $-\,2^{18}\cdot 19^{16}\cdot 37^{2}$
Root discriminant $40.92$
Ramified primes $2, 19, 37$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T460

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1369, 0, 4514, 0, -3723, 0, -8576, 0, 10738, 0, -3923, 0, 265, 0, 118, 0, -22, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 22*x^16 + 118*x^14 + 265*x^12 - 3923*x^10 + 10738*x^8 - 8576*x^6 - 3723*x^4 + 4514*x^2 + 1369)
 
gp: K = bnfinit(x^18 - 22*x^16 + 118*x^14 + 265*x^12 - 3923*x^10 + 10738*x^8 - 8576*x^6 - 3723*x^4 + 4514*x^2 + 1369, 1)
 

Normalized defining polynomial

\( x^{18} - 22 x^{16} + 118 x^{14} + 265 x^{12} - 3923 x^{10} + 10738 x^{8} - 8576 x^{6} - 3723 x^{4} + 4514 x^{2} + 1369 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-103514451522112291747997679616=-\,2^{18}\cdot 19^{16}\cdot 37^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.92$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{6631249878378781} a^{16} - \frac{2619913149742631}{6631249878378781} a^{14} + \frac{2660392789646996}{6631249878378781} a^{12} - \frac{1210823264143366}{6631249878378781} a^{10} + \frac{1907306558557001}{6631249878378781} a^{8} + \frac{2059725144640991}{6631249878378781} a^{6} + \frac{2764233894418139}{6631249878378781} a^{4} + \frac{635637509106347}{6631249878378781} a^{2} + \frac{18629036079850}{179222969685913}$, $\frac{1}{6631249878378781} a^{17} - \frac{2619913149742631}{6631249878378781} a^{15} + \frac{2660392789646996}{6631249878378781} a^{13} - \frac{1210823264143366}{6631249878378781} a^{11} + \frac{1907306558557001}{6631249878378781} a^{9} + \frac{2059725144640991}{6631249878378781} a^{7} + \frac{2764233894418139}{6631249878378781} a^{5} + \frac{635637509106347}{6631249878378781} a^{3} + \frac{18629036079850}{179222969685913} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 103433430.522 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T460:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4608
The 80 conjugacy class representatives for t18n460 are not computed
Character table for t18n460 is not computed

Intermediate fields

3.3.361.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $18$ ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ R $18$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ $18$ $18$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
19Data not computed
37Data not computed