Normalized defining polynomial
\( x^{18} - 3 x^{17} - 21 x^{16} + 76 x^{15} + 96 x^{14} - 717 x^{13} + 560 x^{12} + 2847 x^{11} - 5757 x^{10} - 1706 x^{9} + 19188 x^{8} - 14043 x^{7} - 26356 x^{6} + 35136 x^{5} + 10224 x^{4} - 30440 x^{3} + 6852 x^{2} + 5184 x - 1679 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(942204538878637629328039784448=2^{12}\cdot 3^{23}\cdot 367^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{9} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{15} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{3} a^{11} - \frac{2}{9} a^{10} - \frac{4}{9} a^{9} + \frac{1}{3} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{3} a^{5} - \frac{2}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{37306363106168960704136052706881} a^{17} + \frac{792823481429534356813671921013}{37306363106168960704136052706881} a^{16} - \frac{3210334092904539535719784575302}{37306363106168960704136052706881} a^{15} - \frac{3914179247309191974907561180369}{37306363106168960704136052706881} a^{14} - \frac{2949327090328003289992890576400}{37306363106168960704136052706881} a^{13} - \frac{3880805966624480239130260155367}{37306363106168960704136052706881} a^{12} - \frac{1554332908464777597773151097490}{37306363106168960704136052706881} a^{11} + \frac{4564097936996345610653669818582}{37306363106168960704136052706881} a^{10} - \frac{15840549770324587965948587224046}{37306363106168960704136052706881} a^{9} + \frac{18086497885864523787346141384496}{37306363106168960704136052706881} a^{8} - \frac{9343082477123974156918879372639}{37306363106168960704136052706881} a^{7} + \frac{16467466648665411028639291023782}{37306363106168960704136052706881} a^{6} - \frac{17309160090475996324247057584835}{37306363106168960704136052706881} a^{5} - \frac{5340361272735151058442143035991}{37306363106168960704136052706881} a^{4} + \frac{12860322217427016875006345273098}{37306363106168960704136052706881} a^{3} + \frac{1662232955579272556131192648541}{37306363106168960704136052706881} a^{2} - \frac{15570100665595808506005547533406}{37306363106168960704136052706881} a + \frac{156188560934364941819475342152}{37306363106168960704136052706881}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2100365875.48 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n782 are not computed |
| Character table for t18n782 is not computed |
Intermediate fields
| 3.3.1101.1, 9.9.35026116351444.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.8.4 | $x^{6} + 2 x^{3} + 2 x^{2} + 2$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| $3$ | 3.6.6.7 | $x^{6} + 3 x + 6$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ |
| 3.6.6.7 | $x^{6} + 3 x + 6$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ | |
| 3.6.11.3 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| 367 | Data not computed | ||||||