Normalized defining polynomial
\( x^{18} - 22 x^{16} - 91 x^{15} - 213 x^{14} + 339 x^{13} + 746 x^{12} + 266 x^{11} + 1672 x^{10} - 3107 x^{9} + 10768 x^{8} - 16389 x^{7} - 26733 x^{6} + 21936 x^{5} + 18378 x^{4} + 1485 x^{3} - 318 x - 159 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(91654502087026613265369978837681=3^{10}\cdot 53^{4}\cdot 107^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 53, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{321} a^{16} + \frac{77}{321} a^{15} + \frac{11}{321} a^{14} + \frac{16}{321} a^{13} + \frac{14}{107} a^{12} + \frac{80}{321} a^{11} + \frac{8}{107} a^{10} + \frac{19}{107} a^{9} + \frac{19}{321} a^{8} - \frac{8}{107} a^{7} - \frac{21}{107} a^{6} - \frac{37}{107} a^{5} + \frac{27}{107} a^{4} - \frac{46}{107} a^{3} + \frac{40}{107} a^{2} + \frac{15}{107} a - \frac{34}{107}$, $\frac{1}{2540482643245383572617418375148635577663} a^{17} - \frac{3264450692870794088742743302892361305}{2540482643245383572617418375148635577663} a^{16} - \frac{234947569819724508157670354332570722544}{846827547748461190872472791716211859221} a^{15} + \frac{1097668251765409550447289738505646339402}{2540482643245383572617418375148635577663} a^{14} - \frac{897680040211848497410335290761357608079}{2540482643245383572617418375148635577663} a^{13} + \frac{852055999411716097991827719506924458127}{2540482643245383572617418375148635577663} a^{12} + \frac{202382290227643221181352066320709357599}{2540482643245383572617418375148635577663} a^{11} - \frac{38629722939145977458931482329951257951}{282275849249487063624157597238737286407} a^{10} + \frac{130640679626265727497964671671888359675}{2540482643245383572617418375148635577663} a^{9} + \frac{30598927488491717717412323393151186224}{2540482643245383572617418375148635577663} a^{8} - \frac{19556388540609740400451022999124335327}{282275849249487063624157597238737286407} a^{7} - \frac{40982905787988913533731626593124432313}{282275849249487063624157597238737286407} a^{6} + \frac{163506451147924263441838875153741607619}{846827547748461190872472791716211859221} a^{5} + \frac{29558823090026659854621664258754402989}{282275849249487063624157597238737286407} a^{4} + \frac{644265581050009260395168395933577672}{282275849249487063624157597238737286407} a^{3} + \frac{74123668249032584624732293369276491791}{282275849249487063624157597238737286407} a^{2} - \frac{21933929032947203134193086802439141187}{282275849249487063624157597238737286407} a - \frac{365555498296142683795382377347511608610}{846827547748461190872472791716211859221}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5594626014.79 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 41472 |
| The 37 conjugacy class representatives for t18n713 |
| Character table for t18n713 is not computed |
Intermediate fields
| 3.3.321.1, 9.9.29824410535929.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| 53 | Data not computed | ||||||
| 107 | Data not computed | ||||||