Normalized defining polynomial
\( x^{18} - 32 x^{16} + 142 x^{14} + 4366 x^{12} - 45575 x^{10} + 70434 x^{8} + 185481 x^{6} + 89832 x^{4} + 5456 x^{2} - 2624 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(865961613414533621361938102747136=2^{18}\cdot 3^{6}\cdot 7^{12}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{3}{8} a^{5} - \frac{3}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{3}{8} a^{6} - \frac{3}{8} a^{5} - \frac{3}{8} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{88} a^{14} - \frac{5}{88} a^{12} - \frac{1}{8} a^{11} + \frac{9}{88} a^{10} - \frac{5}{44} a^{8} + \frac{1}{8} a^{7} - \frac{1}{88} a^{6} - \frac{3}{8} a^{5} + \frac{5}{22} a^{4} - \frac{1}{44} a^{2} - \frac{1}{2} a - \frac{1}{11}$, $\frac{1}{176} a^{15} + \frac{3}{88} a^{13} + \frac{5}{44} a^{11} - \frac{1}{8} a^{10} + \frac{3}{44} a^{9} - \frac{23}{176} a^{7} + \frac{1}{8} a^{6} + \frac{4}{11} a^{5} - \frac{3}{8} a^{4} + \frac{9}{176} a^{3} - \frac{13}{44} a - \frac{1}{2}$, $\frac{1}{28909235578784} a^{16} + \frac{4061116061}{903413611837} a^{14} - \frac{501298389771}{14454617789392} a^{12} - \frac{1}{8} a^{11} - \frac{372296217851}{14454617789392} a^{10} - \frac{377706650407}{28909235578784} a^{8} - \frac{1}{8} a^{7} + \frac{2424196589125}{14454617789392} a^{6} - \frac{3}{8} a^{5} - \frac{8318672751727}{28909235578784} a^{4} + \frac{1}{4} a^{3} - \frac{3592297429785}{7227308894696} a^{2} - \frac{1}{4} a + \frac{304629829968}{903413611837}$, $\frac{1}{57818471157568} a^{17} + \frac{4061116061}{1806827223674} a^{15} + \frac{1305528833903}{28909235578784} a^{13} - \frac{2179123441525}{28909235578784} a^{11} + \frac{6849602244289}{57818471157568} a^{9} - \frac{1}{8} a^{8} + \frac{2424196589125}{28909235578784} a^{7} - \frac{15545981646423}{57818471157568} a^{5} - \frac{3}{8} a^{4} + \frac{1134606269187}{3613654447348} a^{3} - \frac{3}{8} a^{2} + \frac{1512673271773}{3613654447348} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16125099670.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.12.18.49 | $x^{12} + 4 x^{11} - 4 x^{10} - 12 x^{9} - 8 x^{8} + 8 x^{7} + 8 x^{6} + 8 x^{5} - 12 x^{4} - 8 x^{3} + 8 x^{2} - 8$ | $4$ | $3$ | $18$ | $A_4 \times C_2$ | $[2, 2, 2]^{3}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 41 | Data not computed | ||||||