Normalized defining polynomial
\( x^{18} - 144 x^{16} - 81 x^{15} + 7614 x^{14} + 9720 x^{13} - 197202 x^{12} - 411156 x^{11} + 2616183 x^{10} + 8244666 x^{9} - 14458662 x^{8} - 82982070 x^{7} - 32322741 x^{6} + 369303381 x^{5} + 733776588 x^{4} - 190800036 x^{3} - 2372472180 x^{2} - 2229463035 x + 712009421 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(863235008531201486809453060245373750604635732521=3^{7}\cdot 107^{6}\cdot 64070660123^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $460.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 107, 64070660123$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{4} + \frac{1}{9} a^{2} - \frac{2}{9}$, $\frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{2}{9} a$, $\frac{1}{27} a^{6} - \frac{1}{9} a^{2} + \frac{2}{27}$, $\frac{1}{27} a^{7} - \frac{1}{9} a^{3} + \frac{2}{27} a$, $\frac{1}{81} a^{8} - \frac{1}{81} a^{6} - \frac{1}{27} a^{4} + \frac{5}{81} a^{2} - \frac{2}{81}$, $\frac{1}{81} a^{9} - \frac{1}{81} a^{7} - \frac{1}{27} a^{5} + \frac{5}{81} a^{3} - \frac{2}{81} a$, $\frac{1}{243} a^{10} + \frac{1}{243} a^{8} + \frac{4}{243} a^{6} - \frac{1}{243} a^{4} - \frac{19}{243} a^{2} + \frac{14}{243}$, $\frac{1}{243} a^{11} + \frac{1}{243} a^{9} + \frac{4}{243} a^{7} - \frac{1}{243} a^{5} - \frac{19}{243} a^{3} + \frac{14}{243} a$, $\frac{1}{729} a^{12} + \frac{1}{243} a^{8} - \frac{5}{729} a^{6} - \frac{2}{81} a^{4} + \frac{11}{243} a^{2} - \frac{14}{729}$, $\frac{1}{729} a^{13} + \frac{1}{243} a^{9} - \frac{5}{729} a^{7} - \frac{2}{81} a^{5} + \frac{11}{243} a^{3} - \frac{14}{729} a$, $\frac{1}{2187} a^{14} - \frac{1}{2187} a^{12} + \frac{1}{729} a^{10} - \frac{8}{2187} a^{8} - \frac{13}{2187} a^{6} + \frac{17}{729} a^{4} - \frac{47}{2187} a^{2} + \frac{14}{2187}$, $\frac{1}{6561} a^{15} - \frac{1}{6561} a^{14} - \frac{4}{6561} a^{13} + \frac{4}{6561} a^{12} - \frac{2}{2187} a^{11} + \frac{2}{2187} a^{10} - \frac{26}{6561} a^{9} + \frac{26}{6561} a^{8} - \frac{115}{6561} a^{7} + \frac{115}{6561} a^{6} + \frac{38}{2187} a^{5} - \frac{38}{2187} a^{4} + \frac{268}{6561} a^{3} - \frac{268}{6561} a^{2} - \frac{232}{6561} a + \frac{232}{6561}$, $\frac{1}{6561} a^{16} + \frac{1}{6561} a^{14} + \frac{1}{6561} a^{12} - \frac{2}{6561} a^{10} - \frac{29}{6561} a^{8} + \frac{25}{6561} a^{6} + \frac{55}{6561} a^{4} - \frac{80}{6561} a^{2} + \frac{28}{6561}$, $\frac{1}{16049899282547048932602420233465712087} a^{17} - \frac{32804530224091148459590033717000}{16049899282547048932602420233465712087} a^{16} - \frac{84189716423393678109477072099617}{16049899282547048932602420233465712087} a^{15} + \frac{2328518594137553429083746199789676}{16049899282547048932602420233465712087} a^{14} - \frac{5190009729540890198798792477989469}{16049899282547048932602420233465712087} a^{13} - \frac{2549675207462711589368239902477559}{16049899282547048932602420233465712087} a^{12} + \frac{30722566984525553264453716425011698}{16049899282547048932602420233465712087} a^{11} - \frac{11036802010987159590853414511218852}{16049899282547048932602420233465712087} a^{10} + \frac{20293754049200512020942052630644124}{16049899282547048932602420233465712087} a^{9} + \frac{94633528625996382804971842457536187}{16049899282547048932602420233465712087} a^{8} - \frac{92362960220772356664595271928060494}{16049899282547048932602420233465712087} a^{7} + \frac{13210554880651677982490847637638356}{16049899282547048932602420233465712087} a^{6} - \frac{671883646743470721578738700057507449}{16049899282547048932602420233465712087} a^{5} + \frac{891240465003995250116005243072006520}{16049899282547048932602420233465712087} a^{4} + \frac{170582082058145605556351889816862792}{16049899282547048932602420233465712087} a^{3} - \frac{1201177625152482379877251997664891715}{16049899282547048932602420233465712087} a^{2} - \frac{2671592599737986282850408060884884787}{16049899282547048932602420233465712087} a - \frac{3906118291011978158833860633199267150}{16049899282547048932602420233465712087}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1079384726660000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2239488 |
| The 255 conjugacy class representatives for t18n945 are not computed |
| Character table for t18n945 is not computed |
Intermediate fields
| 3.3.321.1, 6.4.6601904889734043.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | $18$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | $18$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 107 | Data not computed | ||||||
| 64070660123 | Data not computed | ||||||