Normalized defining polynomial
\( x^{18} - 6 x^{17} + 9 x^{16} + 34 x^{15} - 171 x^{14} + 177 x^{13} + 514 x^{12} - 1461 x^{11} + 438 x^{10} + 2633 x^{9} - 3090 x^{8} - 963 x^{7} + 3216 x^{6} - 801 x^{5} - 405 x^{4} + 567 x^{3} - 351 x^{2} - 243 x - 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(85814502186767229614757312=2^{6}\cdot 3^{24}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5}$, $\frac{1}{90} a^{15} + \frac{7}{90} a^{12} - \frac{13}{30} a^{11} - \frac{1}{3} a^{10} - \frac{22}{45} a^{9} - \frac{7}{15} a^{8} + \frac{7}{15} a^{7} + \frac{41}{90} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{11}{30} a^{3} - \frac{3}{10} a^{2} + \frac{1}{5} a + \frac{1}{10}$, $\frac{1}{90} a^{16} + \frac{7}{90} a^{13} - \frac{1}{10} a^{12} - \frac{1}{3} a^{11} - \frac{22}{45} a^{10} - \frac{2}{15} a^{9} + \frac{7}{15} a^{8} + \frac{41}{90} a^{7} + \frac{2}{15} a^{6} + \frac{2}{5} a^{5} - \frac{11}{30} a^{4} + \frac{11}{30} a^{3} + \frac{1}{5} a^{2} + \frac{1}{10} a$, $\frac{1}{476154329917630640130} a^{17} + \frac{815815444826289601}{158718109972543546710} a^{16} - \frac{1022604373121778733}{238077164958815320065} a^{15} + \frac{22084442049490931857}{476154329917630640130} a^{14} + \frac{12299072768076760772}{79359054986271773355} a^{13} - \frac{4684603241230493849}{476154329917630640130} a^{12} - \frac{11822482245439546718}{47615432991763064013} a^{11} + \frac{35333073563621014171}{79359054986271773355} a^{10} + \frac{2852127698998615546}{47615432991763064013} a^{9} - \frac{191613026772032494891}{476154329917630640130} a^{8} - \frac{46516733109082647049}{158718109972543546710} a^{7} + \frac{4167646487817841738}{238077164958815320065} a^{6} + \frac{66238989752791964861}{158718109972543546710} a^{5} + \frac{38568766972252686178}{79359054986271773355} a^{4} - \frac{7195377356545687133}{31743621994508709342} a^{3} + \frac{703989376142865573}{10581207331502903114} a^{2} + \frac{4305978734647329011}{52906036657514515570} a + \frac{1192738370917482107}{26453018328757257785}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2716594.14709 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 96 conjugacy class representatives for t18n459 are not computed |
| Character table for t18n459 is not computed |
Intermediate fields
| 3.3.3969.2, 3.3.3969.1, \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||