Properties

Label 18.10.7701101007...7157.1
Degree $18$
Signature $[10, 4]$
Discriminant $3^{24}\cdot 7^{12}\cdot 197$
Root discriminant $21.23$
Ramified primes $3, 7, 197$
Class number $1$
Class group Trivial
Galois group 18T459

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 15, -84, 214, -243, 123, -62, 27, -144, 44, 186, -246, 110, 21, -45, 29, -6, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 6*x^16 + 29*x^15 - 45*x^14 + 21*x^13 + 110*x^12 - 246*x^11 + 186*x^10 + 44*x^9 - 144*x^8 + 27*x^7 - 62*x^6 + 123*x^5 - 243*x^4 + 214*x^3 - 84*x^2 + 15*x - 1)
 
gp: K = bnfinit(x^18 - 3*x^17 - 6*x^16 + 29*x^15 - 45*x^14 + 21*x^13 + 110*x^12 - 246*x^11 + 186*x^10 + 44*x^9 - 144*x^8 + 27*x^7 - 62*x^6 + 123*x^5 - 243*x^4 + 214*x^3 - 84*x^2 + 15*x - 1, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{17} - 6 x^{16} + 29 x^{15} - 45 x^{14} + 21 x^{13} + 110 x^{12} - 246 x^{11} + 186 x^{10} + 44 x^{9} - 144 x^{8} + 27 x^{7} - 62 x^{6} + 123 x^{5} - 243 x^{4} + 214 x^{3} - 84 x^{2} + 15 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(770110100710329092297157=3^{24}\cdot 7^{12}\cdot 197\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.23$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 197$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{2} a^{9} + \frac{1}{8} a^{8} - \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{3}{8}$, $\frac{1}{32} a^{16} - \frac{1}{32} a^{15} + \frac{3}{32} a^{14} - \frac{1}{4} a^{13} + \frac{1}{8} a^{12} + \frac{5}{32} a^{11} + \frac{1}{8} a^{10} + \frac{9}{32} a^{9} - \frac{1}{4} a^{8} - \frac{1}{32} a^{7} - \frac{5}{16} a^{6} - \frac{1}{8} a^{5} + \frac{3}{8} a^{4} + \frac{7}{32} a^{3} - \frac{1}{32} a^{2} + \frac{1}{32} a + \frac{3}{32}$, $\frac{1}{27388578712192} a^{17} + \frac{48000828901}{6847144678048} a^{16} - \frac{1684107017}{69514159168} a^{15} - \frac{3243474758937}{27388578712192} a^{14} + \frac{1194867576701}{6847144678048} a^{13} + \frac{37739101213}{151318114432} a^{12} - \frac{1978606922107}{27388578712192} a^{11} + \frac{2688588811293}{27388578712192} a^{10} + \frac{5012441140629}{27388578712192} a^{9} + \frac{5648888606383}{27388578712192} a^{8} - \frac{2808764447255}{27388578712192} a^{7} + \frac{175661423957}{13694289356096} a^{6} + \frac{1566462014961}{3423572339024} a^{5} + \frac{1003036019059}{27388578712192} a^{4} - \frac{3885044658287}{13694289356096} a^{3} - \frac{70827127423}{6847144678048} a^{2} - \frac{4074421415}{18914764304} a + \frac{11574552267719}{27388578712192}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 248683.747013 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T459:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4608
The 96 conjugacy class representatives for t18n459 are not computed
Character table for t18n459 is not computed

Intermediate fields

3.3.3969.1, 3.3.3969.2, \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 9.9.62523502209.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$7$7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
$197$$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
197.2.1.1$x^{2} - 197$$2$$1$$1$$C_2$$[\ ]_{2}$
197.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
197.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$