Normalized defining polynomial
\( x^{18} - 7 x^{17} - 9 x^{16} + 304 x^{15} - 1699 x^{14} - 4503 x^{13} + 22533 x^{12} - 18384 x^{11} + 75555 x^{10} + 840917 x^{9} - 774287 x^{8} - 3766995 x^{7} + 2850333 x^{6} + 7356804 x^{5} - 12232620 x^{4} - 37210252 x^{3} - 28093124 x^{2} + 1530960 x + 6175704 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7123371062223070987165377967901756084928=2^{6}\cdot 3^{24}\cdot 11^{8}\cdot 107^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $163.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{1308} a^{16} + \frac{235}{1308} a^{15} - \frac{167}{1308} a^{14} + \frac{313}{654} a^{13} - \frac{499}{1308} a^{12} + \frac{23}{1308} a^{11} - \frac{553}{1308} a^{10} - \frac{101}{654} a^{9} - \frac{193}{1308} a^{8} + \frac{355}{1308} a^{7} + \frac{523}{1308} a^{6} + \frac{19}{1308} a^{5} + \frac{247}{1308} a^{4} - \frac{145}{654} a^{3} + \frac{46}{327} a^{2} - \frac{37}{109} a - \frac{39}{109}$, $\frac{1}{2524702356625723185362824351715203059881446107395420250702060199116} a^{17} - \frac{70932247730044654213655032137397944478869121444091173282079780}{210391863052143598780235362642933588323453842282951687558505016593} a^{16} - \frac{3277153316159372968184047190486694031441054724981602949022882205}{420783726104287197560470725285867176646907684565903375117010033186} a^{15} + \frac{132827906703847906147377765216909512493315528970457972116965523051}{2524702356625723185362824351715203059881446107395420250702060199116} a^{14} + \frac{316845673118530964146990123571099748749417761993285951060007113921}{841567452208574395120941450571734353293815369131806750234020066372} a^{13} + \frac{17214790859929860928335133312300980891235885888872368777544238441}{140261242034762399186823575095289058882302561521967791705670011062} a^{12} + \frac{48521858607101772674128665232524659110216797090316610715526398590}{210391863052143598780235362642933588323453842282951687558505016593} a^{11} - \frac{18187742605785380866188720678129868043419468656603549156155414891}{280522484069524798373647150190578117764605123043935583411340022124} a^{10} + \frac{91640635897468405411326881009105001378847879211039139830790074561}{280522484069524798373647150190578117764605123043935583411340022124} a^{9} + \frac{208810987607832936374980370674181313167390432985370262536283600615}{631175589156430796340706087928800764970361526848855062675515049779} a^{8} - \frac{47676856263519114669652309177129833889548002212800074900556225533}{210391863052143598780235362642933588323453842282951687558505016593} a^{7} + \frac{180444311075613751939706581761755077449469263422202556187763790667}{420783726104287197560470725285867176646907684565903375117010033186} a^{6} + \frac{1537787738308850808175972899745842382925609539799312479225289437}{140261242034762399186823575095289058882302561521967791705670011062} a^{5} - \frac{140495755100188747070903044036461619168269109655651614408740874693}{841567452208574395120941450571734353293815369131806750234020066372} a^{4} - \frac{84015957215726991617183291825535224237747465579347722046094476619}{420783726104287197560470725285867176646907684565903375117010033186} a^{3} - \frac{364197156318408511309106358167868618687818927312460354385141520825}{1262351178312861592681412175857601529940723053697710125351030099558} a^{2} + \frac{159089730279825776595523144846182773178964446981788826785610490}{23376873672460399864470595849214843147050426920327965284278335177} a + \frac{100682599869739379480104386293077474533506304652614344094578372996}{210391863052143598780235362642933588323453842282951687558505016593}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 121149125417000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n662 are not computed |
| Character table for t18n662 is not computed |
Intermediate fields
| 3.3.321.1, 9.9.3177282828271761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.12.22.44 | $x^{12} + 36 x^{11} - 27 x^{10} - 33 x^{9} - 18 x^{8} + 9 x^{7} - 24 x^{6} - 36 x^{3} - 27 x^{2} - 27 x + 36$ | $6$ | $2$ | $22$ | $D_6$ | $[5/2]_{2}^{2}$ | |
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.12.8.2 | $x^{12} - 1331 x^{3} + 29282$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $107$ | 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |