Normalized defining polynomial
\( x^{18} - 6 x^{17} + 7 x^{16} - x^{15} - 40 x^{14} + 448 x^{13} - 819 x^{12} + 445 x^{11} + 2 x^{10} - 5122 x^{9} + 4397 x^{8} + 988 x^{7} + 1095 x^{6} + 21162 x^{5} + 11423 x^{4} + 6924 x^{3} + 12122 x^{2} + 3092 x - 461 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68387209571737753818736598977=7^{12}\cdot 83^{4}\cdot 97\cdot 181^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 83, 97, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} - \frac{2}{7} a^{15} + \frac{2}{7} a^{14} + \frac{1}{7} a^{13} - \frac{2}{7} a^{12} + \frac{2}{7} a^{11} + \frac{2}{7} a^{10} - \frac{3}{7} a^{9} + \frac{3}{7} a^{8} - \frac{2}{7} a^{7} + \frac{2}{7} a^{6} + \frac{3}{7} a^{5} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{10407749863742300931235200915342480191} a^{17} - \frac{482552858811319973933516092024417537}{10407749863742300931235200915342480191} a^{16} + \frac{3894610926992222341779797008682604378}{10407749863742300931235200915342480191} a^{15} + \frac{1473407492967898415287259314413441881}{10407749863742300931235200915342480191} a^{14} - \frac{2492063279734197468858168388058349493}{10407749863742300931235200915342480191} a^{13} + \frac{898829149419138066206948754946998690}{10407749863742300931235200915342480191} a^{12} + \frac{4715758744789528593039835620889961654}{10407749863742300931235200915342480191} a^{11} + \frac{32256052034691990013467599319702192}{212403058443720427168065324802907759} a^{10} - \frac{4867266068494049292546689107419326854}{10407749863742300931235200915342480191} a^{9} - \frac{609124370270724116655437061499336834}{10407749863742300931235200915342480191} a^{8} - \frac{4592612629623271446817223674838138579}{10407749863742300931235200915342480191} a^{7} - \frac{2799499038541550845778262133203717881}{10407749863742300931235200915342480191} a^{6} - \frac{2752147405249299803012963188437647240}{10407749863742300931235200915342480191} a^{5} + \frac{3806611977668563657854320914488996063}{10407749863742300931235200915342480191} a^{4} + \frac{2908695100281884984357958236417355495}{10407749863742300931235200915342480191} a^{3} - \frac{1328591021674995568317002266520834107}{10407749863742300931235200915342480191} a^{2} + \frac{124749456544424525693869260174805075}{10407749863742300931235200915342480191} a + \frac{4060183944785818119622590030303932249}{10407749863742300931235200915342480191}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 117573040.211 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 192 conjugacy class representatives for t18n839 are not computed |
| Character table for t18n839 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.26552265046321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $83$ | $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.3.2.1 | $x^{3} - 83$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 83.3.2.1 | $x^{3} - 83$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 97 | Data not computed | ||||||
| $181$ | $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 181.2.1.2 | $x^{2} + 362$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.2 | $x^{2} + 362$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.1.2 | $x^{2} + 362$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.2 | $x^{2} + 362$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |