Normalized defining polynomial
\( x^{18} - 4 x^{17} - 9 x^{16} + 102 x^{15} - 243 x^{14} - 492 x^{13} + 2904 x^{12} - 3320 x^{11} - 8983 x^{10} + 27434 x^{9} - 5389 x^{8} - 40470 x^{7} + 66140 x^{6} - 56554 x^{5} - 70720 x^{4} + 137400 x^{3} - 25425 x^{2} - 66850 x + 6125 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68187784456396954697778125000000=2^{6}\cdot 5^{11}\cdot 139^{4}\cdot 197^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 139, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{13} + \frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{2} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{10} a^{3} - \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{14} + \frac{1}{5} a^{12} + \frac{2}{5} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{1}{2} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{10} a^{4} - \frac{1}{10} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{10} + \frac{1}{10} a^{9} - \frac{3}{10} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{3}{10} a^{5} + \frac{3}{10} a^{4} - \frac{3}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{1190} a^{16} - \frac{5}{119} a^{15} - \frac{19}{1190} a^{14} - \frac{5}{238} a^{13} + \frac{86}{595} a^{12} + \frac{199}{1190} a^{11} + \frac{87}{238} a^{10} - \frac{297}{595} a^{9} - \frac{59}{595} a^{8} + \frac{44}{595} a^{7} - \frac{13}{35} a^{6} + \frac{421}{1190} a^{5} + \frac{9}{85} a^{4} - \frac{137}{595} a^{3} - \frac{3}{119} a^{2} + \frac{1}{238} a + \frac{3}{17}$, $\frac{1}{1640125721877606880177574058872367786650} a^{17} - \frac{462849060880694902424865387125162819}{1640125721877606880177574058872367786650} a^{16} - \frac{874835353870508032573282225491571536}{48238991819929614122869825260951993725} a^{15} + \frac{18672345556261614237661799440171450747}{1640125721877606880177574058872367786650} a^{14} - \frac{22035416258715583216704064894978411949}{820062860938803440088787029436183893325} a^{13} - \frac{314473869194354863186629056451638737827}{1640125721877606880177574058872367786650} a^{12} - \frac{17935880475799813693057848258226637299}{48238991819929614122869825260951993725} a^{11} + \frac{5697922444885339305180323205779790021}{164012572187760688017757405887236778665} a^{10} - \frac{26002947534989785297217765806218017184}{820062860938803440088787029436183893325} a^{9} - \frac{458086096533236100211549046472538575631}{1640125721877606880177574058872367786650} a^{8} - \frac{200162968353776941185609799755231910637}{820062860938803440088787029436183893325} a^{7} + \frac{33276949626992714286781632931037739}{32802514437552137603551481177447355733} a^{6} - \frac{77519490830722511499624298718039005838}{164012572187760688017757405887236778665} a^{5} - \frac{314932496719644585799639864210914523932}{820062860938803440088787029436183893325} a^{4} - \frac{9312468016984095003709825582071555097}{19295596727971845649147930104380797490} a^{3} + \frac{29307812351064618546789975349858559103}{65605028875104275207102962354894711466} a^{2} + \frac{3751410327975875185772166615760378637}{32802514437552137603551481177447355733} a + \frac{1741531202784806699013224978318525014}{4686073491078876800507354453921050819}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7950821582.44 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 84 conjugacy class representatives for t18n775 are not computed |
| Character table for t18n775 is not computed |
Intermediate fields
| 3.3.985.1, 9.9.92322657333125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 139 | Data not computed | ||||||
| $197$ | 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.2.1.2 | $x^{2} + 394$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.2 | $x^{2} + 394$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.8.4.1 | $x^{8} + 1397124 x^{4} - 7645373 x^{2} + 487988867844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |