/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^18 - 9*x^17 + 33*x^16 - 60*x^15 + 27*x^14 + 147*x^13 - 394*x^12 + 375*x^11 + 130*x^10 - 727*x^9 + 730*x^8 - 49*x^7 - 526*x^6 + 431*x^5 - 51*x^4 - 112*x^3 + 55*x^2 - x - 5, 18, 662, [10, 4], 678542935598363021173919140719757, [13, 3733, 32009], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, 1/2*a^8 - 1/2*a^6 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2*a^2 - 1/2, 1/2*a^9 - 1/2*a^7 - 1/2*a^6 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2*a, 1/4*a^10 - 1/4*a^9 - 1/2*a^7 + 1/4*a^6 - 1/4*a^5 - 1/4*a^4 - 1/2*a^3 + 1/4*a + 1/4, 1/4*a^11 - 1/4*a^9 - 1/4*a^7 - 1/2*a^6 - 1/4*a^4 - 1/4*a^2 - 1/2*a - 1/4, 1/4*a^12 - 1/4*a^9 - 1/4*a^8 + 1/4*a^6 - 1/2*a^5 - 1/4*a^4 + 1/4*a^3 - 1/2*a^2 + 1/4, 1/4*a^13 + 1/4*a^7 + 1/4*a^6 - 1/2*a^4 - 1/2*a^3 + 1/4, 1/4*a^14 - 1/4*a^8 + 1/4*a^7 - 1/2*a^6 - 1/2*a^3 - 1/2*a^2 + 1/4*a - 1/2, 1/4*a^15 - 1/4*a^9 - 1/4*a^8 - 1/2*a^7 - 1/2*a^6 - 1/2*a^5 - 1/4*a^2 - 1/2*a - 1/2, 1/52*a^16 + 5/52*a^15 + 1/26*a^14 - 1/13*a^13 + 3/52*a^12 - 5/52*a^11 + 9/52*a^9 - 1/13*a^8 + 11/52*a^7 - 3/13*a^6 - 15/52*a^5 - 5/52*a^4 - 11/26*a^3 + 4/13*a^2 + 7/52*a + 19/52, 1/52*a^17 + 3/52*a^15 - 1/52*a^14 - 3/52*a^13 + 3/26*a^12 - 1/52*a^11 - 1/13*a^10 - 5/26*a^9 - 2/13*a^8 + 6/13*a^7 - 5/13*a^6 + 5/52*a^5 - 5/26*a^4 + 11/26*a^3 - 21/52*a^2 - 4/13*a + 11/26], 0, 1, [], 1, [ (9)/(26)*a^(16) - (36)/(13)*a^(15) + (113)/(13)*a^(14) - (161)/(13)*a^(13) - (51)/(26)*a^(12) + (608)/(13)*a^(11) - (351)/(4)*a^(10) + (2333)/(52)*a^(9) + (1022)/(13)*a^(8) - (4087)/(26)*a^(7) + (4607)/(52)*a^(6) + (2967)/(52)*a^(5) - (5147)/(52)*a^(4) + (473)/(13)*a^(3) + (287)/(26)*a^(2) - (589)/(52)*a + (147)/(52) , (1)/(52)*a^(16) - (2)/(13)*a^(15) + (7)/(13)*a^(14) - (14)/(13)*a^(13) + (21)/(26)*a^(12) + (28)/(13)*a^(11) - (15)/(2)*a^(10) + (271)/(26)*a^(9) - (40)/(13)*a^(8) - (202)/(13)*a^(7) + (1379)/(52)*a^(6) - (847)/(52)*a^(5) - (473)/(52)*a^(4) + (1239)/(52)*a^(3) - (265)/(26)*a^(2) - (71)/(52)*a + (149)/(52) , (17)/(52)*a^(16) - (34)/(13)*a^(15) + (106)/(13)*a^(14) - (147)/(13)*a^(13) - (36)/(13)*a^(12) + (580)/(13)*a^(11) - (321)/(4)*a^(10) + (1791)/(52)*a^(9) + (1062)/(13)*a^(8) - (3683)/(26)*a^(7) + (807)/(13)*a^(6) + (1907)/(26)*a^(5) - (2337)/(26)*a^(4) + (653)/(52)*a^(3) + (276)/(13)*a^(2) - (259)/(26)*a - (53)/(26) , (11)/(13)*a^(16) - (88)/(13)*a^(15) + (269)/(13)*a^(14) - (343)/(13)*a^(13) - (765)/(52)*a^(12) + (3205)/(26)*a^(11) - (799)/(4)*a^(10) + (606)/(13)*a^(9) + (13877)/(52)*a^(8) - (9495)/(26)*a^(7) + (2271)/(26)*a^(6) + (13731)/(52)*a^(5) - (2993)/(13)*a^(4) - (1501)/(52)*a^(3) + (982)/(13)*a^(2) - (693)/(52)*a - (271)/(26) , (1)/(13)*a^(16) - (8)/(13)*a^(15) + (99)/(52)*a^(14) - (133)/(52)*a^(13) - (53)/(52)*a^(12) + (591)/(52)*a^(11) - 20*a^(10) + (213)/(26)*a^(9) + (577)/(26)*a^(8) - (2101)/(52)*a^(7) + (561)/(26)*a^(6) + (425)/(26)*a^(5) - (369)/(13)*a^(4) + (679)/(52)*a^(3) + (181)/(52)*a^(2) - (271)/(52)*a + (89)/(52) , (3)/(52)*a^(16) - (6)/(13)*a^(15) + (29)/(26)*a^(14) + (7)/(26)*a^(13) - (355)/(52)*a^(12) + (214)/(13)*a^(11) - (53)/(4)*a^(10) - (302)/(13)*a^(9) + (3459)/(52)*a^(8) - (723)/(13)*a^(7) - (803)/(52)*a^(6) + (2051)/(26)*a^(5) - (2953)/(52)*a^(4) - (62)/(13)*a^(3) + (272)/(13)*a^(2) - (102)/(13)*a - (99)/(52) , (18)/(13)*a^(16) - (144)/(13)*a^(15) + (891)/(26)*a^(14) - (1197)/(26)*a^(13) - (889)/(52)*a^(12) + (2562)/(13)*a^(11) - 342*a^(10) + (6563)/(52)*a^(9) + (20161)/(52)*a^(8) - (16517)/(26)*a^(7) + (13605)/(52)*a^(6) + (8989)/(26)*a^(5) - (21511)/(52)*a^(4) + (3291)/(52)*a^(3) + (1224)/(13)*a^(2) - (602)/(13)*a - (517)/(52) , (7)/(26)*a^(16) - (28)/(13)*a^(15) + (183)/(26)*a^(14) - (301)/(26)*a^(13) + (211)/(52)*a^(12) + (366)/(13)*a^(11) - 67*a^(10) + (2999)/(52)*a^(9) + (789)/(52)*a^(8) - (2237)/(26)*a^(7) + (4031)/(52)*a^(6) - (72)/(13)*a^(5) - (1721)/(52)*a^(4) + (901)/(52)*a^(3) - (9)/(13)*a^(2) - (29)/(26)*a - (59)/(52) , (5)/(13)*a^(17) - (197)/(52)*a^(16) + (415)/(26)*a^(15) - (1935)/(52)*a^(14) + (179)/(4)*a^(13) + (595)/(52)*a^(12) - (7901)/(52)*a^(11) + (3568)/(13)*a^(10) - (5569)/(26)*a^(9) - (493)/(13)*a^(8) + (13965)/(52)*a^(7) - (13909)/(52)*a^(6) + (411)/(4)*a^(5) + (577)/(52)*a^(4) - (577)/(26)*a^(3) + (185)/(52)*a^(2) + (1)/(13)*a + (3)/(13) , (33)/(13)*a^(17) - (284)/(13)*a^(16) + (3959)/(52)*a^(15) - (6811)/(52)*a^(14) + (1255)/(26)*a^(13) + (4377)/(13)*a^(12) - (44021)/(52)*a^(11) + (19847)/(26)*a^(10) + 262*a^(9) - (36775)/(26)*a^(8) + (37807)/(26)*a^(7) - (3050)/(13)*a^(6) - (20751)/(26)*a^(5) + (41241)/(52)*a^(4) - (3959)/(13)*a^(3) - (1621)/(26)*a^(2) + (5159)/(52)*a - (2469)/(52) , (8)/(13)*a^(17) - (66)/(13)*a^(16) + (843)/(52)*a^(15) - (1171)/(52)*a^(14) - (353)/(52)*a^(13) + (4795)/(52)*a^(12) - (8475)/(52)*a^(11) + (3057)/(52)*a^(10) + (5061)/(26)*a^(9) - (15671)/(52)*a^(8) + (4741)/(52)*a^(7) + (11043)/(52)*a^(6) - (11155)/(52)*a^(5) - (677)/(52)*a^(4) + (4679)/(52)*a^(3) - (340)/(13)*a^(2) - (174)/(13)*a + (119)/(26) , (1)/(2)*a^(17) - (5)/(2)*a^(16) + (9)/(4)*a^(15) + 10*a^(14) - (149)/(4)*a^(13) + (205)/(4)*a^(12) + 24*a^(11) - (705)/(4)*a^(10) + (859)/(4)*a^(9) - (33)/(2)*a^(8) - (1087)/(4)*a^(7) + (1225)/(4)*a^(6) - (203)/(4)*a^(5) - (289)/(2)*a^(4) + (523)/(4)*a^(3) - (121)/(4)*a^(2) - (39)/(4)*a + (27)/(4) , (73)/(52)*a^(17) - (547)/(52)*a^(16) + (835)/(26)*a^(15) - (2519)/(52)*a^(14) + (73)/(13)*a^(13) + (1880)/(13)*a^(12) - (15447)/(52)*a^(11) + (5509)/(26)*a^(10) + (7139)/(52)*a^(9) - (22043)/(52)*a^(8) + (16093)/(52)*a^(7) + (1291)/(26)*a^(6) - (5127)/(26)*a^(5) + (4111)/(52)*a^(4) + (1693)/(52)*a^(3) - (729)/(26)*a^(2) - (31)/(52)*a + (49)/(13) ], 19442863729.4, [[x^3 - 41*x - 95, 1], [x^9 - 3*x^8 - 15*x^7 + 47*x^6 + 25*x^5 - 117*x^4 + 4*x^3 + 54*x^2 + x - 5, 1]]]