Normalized defining polynomial
\( x^{18} - 3 x^{17} - 29 x^{16} + 133 x^{15} - 18 x^{14} - 810 x^{13} + 2764 x^{12} - 8967 x^{11} + 13513 x^{10} + 46545 x^{9} - 229417 x^{8} + 283982 x^{7} + 253555 x^{6} - 1149513 x^{5} + 1413873 x^{4} - 819117 x^{3} + 215019 x^{2} - 27351 x + 4509 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(663001860270502303855233859915776=2^{12}\cdot 3^{6}\cdot 7^{14}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{3} a^{8} + \frac{1}{6} a^{6} + \frac{1}{3} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{15} + \frac{1}{12} a^{13} + \frac{1}{12} a^{12} - \frac{1}{4} a^{11} + \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{5}{12} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{5148} a^{16} + \frac{31}{858} a^{15} + \frac{133}{5148} a^{14} - \frac{623}{5148} a^{13} + \frac{5}{52} a^{12} - \frac{1}{13} a^{11} + \frac{685}{5148} a^{10} - \frac{259}{1716} a^{9} + \frac{19}{1287} a^{8} - \frac{211}{429} a^{7} + \frac{361}{2574} a^{6} - \frac{73}{234} a^{5} - \frac{1487}{5148} a^{4} + \frac{181}{429} a^{3} + \frac{17}{52} a^{2} + \frac{229}{572} a - \frac{37}{143}$, $\frac{1}{112160419672266034426893720326397239556} a^{17} + \frac{562468733657723874451897937082869}{56080209836133017213446860163198619778} a^{16} + \frac{1499894063584685577954648575801227}{50093979308738738020050790677265404} a^{15} - \frac{5395382003926063976899708757654371231}{112160419672266034426893720326397239556} a^{14} - \frac{9770452530571332160158140054479018385}{112160419672266034426893720326397239556} a^{13} - \frac{2243126299543586573276226623657714}{25748489364615710382666143325619201} a^{12} + \frac{13187295136720243964984525029264258555}{112160419672266034426893720326397239556} a^{11} + \frac{4444002037746782009193663291465673873}{112160419672266034426893720326397239556} a^{10} + \frac{11394313017722776756788239950999702337}{56080209836133017213446860163198619778} a^{9} + \frac{7679685039644963558475375100954875485}{56080209836133017213446860163198619778} a^{8} - \frac{4793681847767578040167670920032442817}{56080209836133017213446860163198619778} a^{7} - \frac{3592767932478009814058430560387388638}{28040104918066508606723430081599309889} a^{6} - \frac{395857280106625652555318775523132113}{958636065574923371170031797661514868} a^{5} - \frac{7423895589901570369098952011119652410}{28040104918066508606723430081599309889} a^{4} + \frac{5439979235231949801061534797290539727}{12462268852474003825210413369599693284} a^{3} - \frac{7082051958225604099802321006046833881}{37386806557422011475631240108799079852} a^{2} + \frac{103131424482290059473848132051014263}{3115567213118500956302603342399923321} a - \frac{1618188460175150121121170502345569433}{6231134426237001912605206684799846642}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11811526373.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| 41 | Data not computed | ||||||