Normalized defining polynomial
\( x^{18} - 3 x^{17} - 3 x^{16} - 198 x^{14} + 665 x^{13} - 1035 x^{12} + 1680 x^{11} + 8425 x^{10} - 13464 x^{9} + 6284 x^{8} - 61792 x^{7} + 76447 x^{6} - 23603 x^{5} + 72610 x^{4} - 90727 x^{3} + 16016 x^{2} + 10176 x - 1247 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(663001860270502303855233859915776=2^{12}\cdot 3^{6}\cdot 7^{14}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{11} + \frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{2}{7} a^{8} - \frac{2}{7} a^{7} + \frac{1}{7} a^{6} - \frac{1}{7} a^{4} - \frac{2}{7} a^{2} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{13} - \frac{3}{7} a^{11} - \frac{1}{7} a^{10} - \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{3}{7} a^{7} + \frac{2}{7} a^{6} - \frac{1}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{10} - \frac{1}{7} a^{9} - \frac{2}{7} a^{8} + \frac{3}{7} a^{7} + \frac{2}{7} a^{6} - \frac{2}{7} a^{5} + \frac{2}{7} a^{4} + \frac{1}{7} a^{2} + \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{15} + \frac{2}{7} a^{11} - \frac{1}{7} a^{10} - \frac{2}{7} a^{9} + \frac{3}{7} a^{8} + \frac{2}{7} a^{7} - \frac{2}{7} a^{6} + \frac{2}{7} a^{5} + \frac{1}{7} a^{3} + \frac{3}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{196} a^{16} - \frac{5}{196} a^{15} + \frac{3}{98} a^{14} - \frac{1}{28} a^{13} + \frac{3}{98} a^{12} - \frac{10}{49} a^{11} - \frac{9}{196} a^{10} - \frac{13}{98} a^{9} - \frac{27}{98} a^{8} - \frac{1}{98} a^{7} + \frac{1}{14} a^{6} - \frac{39}{98} a^{5} + \frac{93}{196} a^{4} - \frac{79}{196} a^{3} + \frac{15}{196} a^{2} - \frac{1}{2} a - \frac{15}{196}$, $\frac{1}{11524998163090493788859411642915021474768} a^{17} + \frac{679950542837168565697592056668292676}{720312385193155861803713227682188842173} a^{16} + \frac{611619119900345864253226760424493371149}{11524998163090493788859411642915021474768} a^{15} + \frac{352247752191014721868818118878910627367}{11524998163090493788859411642915021474768} a^{14} + \frac{188105515542412676425934554738906461231}{11524998163090493788859411642915021474768} a^{13} + \frac{384852680786033096887971974618902098299}{5762499081545246894429705821457510737384} a^{12} + \frac{5733829526674345676545846121321604671767}{11524998163090493788859411642915021474768} a^{11} - \frac{4621288498533004655990351366727766336171}{11524998163090493788859411642915021474768} a^{10} + \frac{85294102857412594477664210438979965169}{1440624770386311723607426455364377684346} a^{9} - \frac{43930696601587417491987524964578021558}{720312385193155861803713227682188842173} a^{8} - \frac{667244498300920147620240004199967107793}{2881249540772623447214852910728755368692} a^{7} - \frac{440889843716395877131341585656946477863}{2881249540772623447214852910728755368692} a^{6} - \frac{4551827829739639571158650115450235574645}{11524998163090493788859411642915021474768} a^{5} + \frac{1294576546822438465835390174771277046831}{5762499081545246894429705821457510737384} a^{4} + \frac{1109493237440443313010842035654653743687}{2881249540772623447214852910728755368692} a^{3} + \frac{842876257927002592948086684382438398989}{11524998163090493788859411642915021474768} a^{2} - \frac{2705513170271367076808670801516607450105}{11524998163090493788859411642915021474768} a - \frac{2247656604520639208620900021173610599243}{11524998163090493788859411642915021474768}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9097730080.24 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n657 are not computed |
| Character table for t18n657 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.574470067776192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| 41 | Data not computed | ||||||