Normalized defining polynomial
\( x^{18} - 3 x^{17} - 54 x^{15} - 105 x^{14} + 759 x^{13} + 86 x^{12} + 3957 x^{11} + 8847 x^{10} - 15539 x^{9} + 2514 x^{8} - 148635 x^{7} - 429672 x^{6} - 539649 x^{5} - 1230822 x^{4} - 122463 x^{3} + 1477521 x^{2} - 73305 x - 224019 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(64897455079312633154135966180553=3^{24}\cdot 73^{5}\cdot 577^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5}$, $\frac{1}{9} a^{15} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{4}{9} a^{9} + \frac{1}{3} a^{8} + \frac{4}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{16} + \frac{1}{3} a^{11} - \frac{4}{9} a^{10} + \frac{1}{3} a^{9} + \frac{4}{9} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{20049626208849591047109845578674617427070368090229389} a^{17} + \frac{862225951513079230964019203990955654151616757532670}{20049626208849591047109845578674617427070368090229389} a^{16} + \frac{223813137443221150390039199074376055777319878233392}{20049626208849591047109845578674617427070368090229389} a^{15} - \frac{679818053336043976036086582927301412363792517695560}{6683208736283197015703281859558205809023456030076463} a^{14} + \frac{180857739944601951948666756943417609128908348289991}{2227736245427732338567760619852735269674485343358821} a^{13} + \frac{1081343214583585824785527933554899027556573493517347}{6683208736283197015703281859558205809023456030076463} a^{12} + \frac{6723676027548206441123240422097529381871046532362120}{20049626208849591047109845578674617427070368090229389} a^{11} + \frac{1547034558344378395047895514724054957756586048193401}{20049626208849591047109845578674617427070368090229389} a^{10} + \frac{6543733858405434012311639889474902988292041121397261}{20049626208849591047109845578674617427070368090229389} a^{9} - \frac{5783856347016865137047219820589147593533048470631030}{20049626208849591047109845578674617427070368090229389} a^{8} - \frac{1711968634897274103002066988324864295195283955879706}{20049626208849591047109845578674617427070368090229389} a^{7} - \frac{4479162955461930543069654375866092784507530355682527}{20049626208849591047109845578674617427070368090229389} a^{6} + \frac{1064768223467586080047517807933097064634504704449522}{2227736245427732338567760619852735269674485343358821} a^{5} + \frac{506031199102514121097055035600880170769149794468219}{2227736245427732338567760619852735269674485343358821} a^{4} - \frac{1112895285439957817353738293900908562636336068976127}{2227736245427732338567760619852735269674485343358821} a^{3} + \frac{347491980979516807968265104400223523903977746387006}{2227736245427732338567760619852735269674485343358821} a^{2} - \frac{399680460878848559710680169082451862810638930943681}{2227736245427732338567760619852735269674485343358821} a + \frac{589759447792129438190887509432093747146169625474901}{2227736245427732338567760619852735269674485343358821}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1831456300.14 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n767 are not computed |
| Character table for t18n767 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 9.9.22384826361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 73 | Data not computed | ||||||
| 577 | Data not computed | ||||||