Normalized defining polynomial
\( x^{18} - 24 x^{16} - 39 x^{15} + 186 x^{14} + 612 x^{13} - 177 x^{12} - 2974 x^{11} - 3150 x^{10} + 3714 x^{9} + 9240 x^{8} + 2893 x^{7} - 6732 x^{6} - 5964 x^{5} + 340 x^{4} + 2109 x^{3} + 682 x^{2} + 13 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5799380344807175895894517717=13^{3}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{2}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{9} a^{2} + \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{27} a^{15} - \frac{1}{9} a^{13} + \frac{4}{27} a^{12} - \frac{1}{9} a^{11} + \frac{13}{27} a^{9} + \frac{2}{27} a^{8} + \frac{1}{9} a^{7} - \frac{5}{27} a^{6} + \frac{11}{27} a^{5} + \frac{10}{27} a^{4} - \frac{11}{27} a^{3} - \frac{7}{27} a^{2} - \frac{1}{27} a + \frac{13}{27}$, $\frac{1}{891} a^{16} - \frac{7}{891} a^{15} - \frac{4}{297} a^{14} + \frac{7}{891} a^{13} - \frac{13}{891} a^{12} + \frac{49}{297} a^{11} - \frac{131}{891} a^{10} - \frac{71}{891} a^{9} + \frac{412}{891} a^{8} - \frac{107}{891} a^{7} - \frac{206}{891} a^{6} + \frac{25}{81} a^{5} + \frac{17}{99} a^{4} + \frac{16}{891} a^{3} - \frac{29}{297} a^{2} + \frac{344}{891} a + \frac{8}{891}$, $\frac{1}{395844401234799} a^{17} + \frac{88378235134}{395844401234799} a^{16} + \frac{177219731078}{13649806939131} a^{15} - \frac{9080860727699}{395844401234799} a^{14} - \frac{59164441609784}{395844401234799} a^{13} + \frac{28991440022707}{395844401234799} a^{12} - \frac{22778518070249}{395844401234799} a^{11} - \frac{17803770772706}{131948133744933} a^{10} + \frac{21392948731258}{131948133744933} a^{9} - \frac{7999380616955}{43982711248311} a^{8} - \frac{22487655020656}{131948133744933} a^{7} - \frac{117980404487171}{395844401234799} a^{6} + \frac{64680687427102}{395844401234799} a^{5} - \frac{38968754040605}{395844401234799} a^{4} + \frac{64783801470764}{395844401234799} a^{3} - \frac{108194051743480}{395844401234799} a^{2} - \frac{515875287284}{4886967916479} a - \frac{167640474556472}{395844401234799}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25525139.3669 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for t18n375 |
| Character table for t18n375 is not computed |
Intermediate fields
| 3.3.1129.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | $18$ | $18$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1129 | Data not computed | ||||||