Normalized defining polynomial
\( x^{18} - x^{17} - 16 x^{16} + 35 x^{15} + 5 x^{14} - 203 x^{13} + 655 x^{12} - 765 x^{11} + 598 x^{10} + 1621 x^{9} - 10878 x^{8} + 19717 x^{7} - 7900 x^{6} - 20488 x^{5} + 2160 x^{4} + 1529 x^{3} + 4373 x^{2} - 1757 x + 131 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(56077017912500993006793084928=2^{12}\cdot 37^{7}\cdot 229^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{53} a^{16} - \frac{9}{53} a^{15} + \frac{25}{53} a^{14} + \frac{8}{53} a^{13} + \frac{14}{53} a^{12} + \frac{20}{53} a^{11} + \frac{8}{53} a^{10} - \frac{18}{53} a^{9} + \frac{17}{53} a^{8} - \frac{24}{53} a^{7} + \frac{23}{53} a^{6} - \frac{22}{53} a^{5} - \frac{10}{53} a^{4} - \frac{10}{53} a^{3} + \frac{6}{53} a^{2} - \frac{11}{53} a - \frac{18}{53}$, $\frac{1}{426914568440714682730244724352801811} a^{17} + \frac{1917436127232348645708989617284631}{426914568440714682730244724352801811} a^{16} - \frac{135657915670317350177653285180409793}{426914568440714682730244724352801811} a^{15} + \frac{123280116679523125241378580480094103}{426914568440714682730244724352801811} a^{14} - \frac{16709355269622489998004627925979774}{426914568440714682730244724352801811} a^{13} + \frac{31440918643616601187785176204968849}{426914568440714682730244724352801811} a^{12} - \frac{39362053000503656329571580454088802}{426914568440714682730244724352801811} a^{11} + \frac{50729448912378117579619597018549987}{426914568440714682730244724352801811} a^{10} - \frac{181814505315332497955068965995217965}{426914568440714682730244724352801811} a^{9} - \frac{60266833372261396876647296552982183}{426914568440714682730244724352801811} a^{8} + \frac{60469527383922817709639564210785284}{426914568440714682730244724352801811} a^{7} - \frac{155148287291111228853731089056790429}{426914568440714682730244724352801811} a^{6} + \frac{94380813320488044089527424365470088}{426914568440714682730244724352801811} a^{5} - \frac{142728700271367445433448810774892294}{426914568440714682730244724352801811} a^{4} - \frac{142728742330927473926940010871408418}{426914568440714682730244724352801811} a^{3} + \frac{164193497799812052099855445585193276}{426914568440714682730244724352801811} a^{2} + \frac{120375638615351680717199427254001012}{426914568440714682730244724352801811} a - \frac{63287359185117259007193659523945318}{426914568440714682730244724352801811}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51640452.4861 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 192 conjugacy class representatives for t18n764 are not computed |
| Character table for t18n764 is not computed |
Intermediate fields
| 3.3.229.1, 9.9.16440305941.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.12.23 | $x^{12} - 2 x^{10} - 65 x^{8} + 100 x^{6} - 97 x^{4} - 98 x^{2} + 97$ | $2$ | $6$ | $12$ | $C_2^2 \times A_4$ | $[2, 2, 2]^{6}$ | |
| $37$ | 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.4.2 | $x^{6} - 37 x^{3} + 6845$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 229 | Data not computed | ||||||