Properties

Label 18.10.5541247756...7001.1
Degree $18$
Signature $[10, 4]$
Discriminant $7^{12}\cdot 13^{4}\cdot 41\cdot 43^{4}$
Root discriminant $18.35$
Ramified primes $7, 13, 41, 43$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T696

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 6, -14, -54, 102, -31, 116, -221, 81, 24, -25, 64, -92, 56, -8, -12, 13, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 13*x^16 - 12*x^15 - 8*x^14 + 56*x^13 - 92*x^12 + 64*x^11 - 25*x^10 + 24*x^9 + 81*x^8 - 221*x^7 + 116*x^6 - 31*x^5 + 102*x^4 - 54*x^3 - 14*x^2 + 6*x + 1)
 
gp: K = bnfinit(x^18 - 6*x^17 + 13*x^16 - 12*x^15 - 8*x^14 + 56*x^13 - 92*x^12 + 64*x^11 - 25*x^10 + 24*x^9 + 81*x^8 - 221*x^7 + 116*x^6 - 31*x^5 + 102*x^4 - 54*x^3 - 14*x^2 + 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{17} + 13 x^{16} - 12 x^{15} - 8 x^{14} + 56 x^{13} - 92 x^{12} + 64 x^{11} - 25 x^{10} + 24 x^{9} + 81 x^{8} - 221 x^{7} + 116 x^{6} - 31 x^{5} + 102 x^{4} - 54 x^{3} - 14 x^{2} + 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(55412477560287811237001=7^{12}\cdot 13^{4}\cdot 41\cdot 43^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 13, 41, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2245155613523747} a^{17} + \frac{427304028150313}{2245155613523747} a^{16} + \frac{616033565283071}{2245155613523747} a^{15} - \frac{438254776888663}{2245155613523747} a^{14} + \frac{392279056456180}{2245155613523747} a^{13} + \frac{45207414107821}{2245155613523747} a^{12} - \frac{449764593507163}{2245155613523747} a^{11} - \frac{1073414031195196}{2245155613523747} a^{10} - \frac{284043701577465}{2245155613523747} a^{9} - \frac{1055925931976861}{2245155613523747} a^{8} + \frac{1104755355134499}{2245155613523747} a^{7} + \frac{606286901236372}{2245155613523747} a^{6} + \frac{7483086925348}{2245155613523747} a^{5} + \frac{206345105764826}{2245155613523747} a^{4} - \frac{534680511464743}{2245155613523747} a^{3} + \frac{2827113686840}{2245155613523747} a^{2} + \frac{430959745961561}{2245155613523747} a - \frac{665344339944651}{2245155613523747}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 48685.4371082 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T696:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 41472
The 192 conjugacy class representatives for t18n696 are not computed
Character table for t18n696 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.9.36763077169.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ R $18$ R ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ $18$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ R R ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ $18$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
$13$13.3.0.1$x^{3} - 2 x + 6$$1$$3$$0$$C_3$$[\ ]^{3}$
13.3.0.1$x^{3} - 2 x + 6$$1$$3$$0$$C_3$$[\ ]^{3}$
13.3.2.1$x^{3} + 26$$3$$1$$2$$C_3$$[\ ]_{3}$
13.3.2.1$x^{3} + 26$$3$$1$$2$$C_3$$[\ ]_{3}$
13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
41Data not computed
$43$$\Q_{43}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{43}$$x + 9$$1$$1$$0$Trivial$[\ ]$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.6.4.1$x^{6} + 344 x^{3} + 49923$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
43.6.0.1$x^{6} - x + 26$$1$$6$$0$$C_6$$[\ ]^{6}$