Normalized defining polynomial
\( x^{18} + 3 x^{16} - 4 x^{15} - 657 x^{14} + 956 x^{13} - 1352 x^{12} + 4556 x^{11} + 120476 x^{10} - 409872 x^{9} + 174583 x^{8} + 1248426 x^{7} - 3121933 x^{6} + 2409572 x^{5} + 1634473 x^{4} - 5232806 x^{3} + 2559048 x^{2} + 1428746 x - 77669 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(548274266819953501843032253923328=2^{18}\cdot 97^{5}\cdot 101^{6}\cdot 479^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 101, 479$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{58576434223349619245649039749419284038185789468843855350821082139} a^{17} + \frac{17525004157408396159516175704520034840992068712641407729399438806}{58576434223349619245649039749419284038185789468843855350821082139} a^{16} - \frac{20024321301181712560267669125701306871689441617843526257285474595}{58576434223349619245649039749419284038185789468843855350821082139} a^{15} + \frac{16952044666665086981052672841337550716941471929224702904683250236}{58576434223349619245649039749419284038185789468843855350821082139} a^{14} + \frac{11717911426401571845925355956508548512929617149473958992199492875}{58576434223349619245649039749419284038185789468843855350821082139} a^{13} - \frac{14856747535153779439226495892011363257651462219433894629724564380}{58576434223349619245649039749419284038185789468843855350821082139} a^{12} + \frac{7942587074091473630002021133830018827148305699027585285616506016}{58576434223349619245649039749419284038185789468843855350821082139} a^{11} - \frac{2632995242371123313177322440913435216373732219808248619035522205}{58576434223349619245649039749419284038185789468843855350821082139} a^{10} + \frac{17130571516127648354877075059917745412522472383219305838135623290}{58576434223349619245649039749419284038185789468843855350821082139} a^{9} - \frac{15200911717167404369793075397788598628530473386492623815106626949}{58576434223349619245649039749419284038185789468843855350821082139} a^{8} + \frac{555902389079322071249377567301050166373087710394600156392132530}{1362242656356967889433698598823704279957809057414973380251653073} a^{7} + \frac{157490465567748342073276731108731788469667576877447599896196791}{58576434223349619245649039749419284038185789468843855350821082139} a^{6} + \frac{726094715365473420418345919467818868450267362018992409719418126}{58576434223349619245649039749419284038185789468843855350821082139} a^{5} + \frac{19758354126188646491984965114931014513288265643826238400038997649}{58576434223349619245649039749419284038185789468843855350821082139} a^{4} - \frac{18539909242953743466883364644516006053068136495312742977411072488}{58576434223349619245649039749419284038185789468843855350821082139} a^{3} + \frac{18021759232025112216620100194355246273833036758389883657081315009}{58576434223349619245649039749419284038185789468843855350821082139} a^{2} - \frac{23098833968803739850366548930370719034799072164260659151209301262}{58576434223349619245649039749419284038185789468843855350821082139} a + \frac{9882408011401342582176578698851972011164364922057950588050317183}{58576434223349619245649039749419284038185789468843855350821082139}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7952598176.45 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 130 conjugacy class representatives for t18n836 are not computed |
| Character table for t18n836 is not computed |
Intermediate fields
| 3.3.404.1, 9.7.31584907456.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 97 | Data not computed | ||||||
| 101 | Data not computed | ||||||
| 479 | Data not computed | ||||||