Normalized defining polynomial
\( x^{18} - 2 x^{17} - 5 x^{16} + 8 x^{15} + 11 x^{14} - 8 x^{13} - 78 x^{12} + 250 x^{11} - 130 x^{10} - 892 x^{9} + 1931 x^{8} - 712 x^{7} - 2623 x^{6} + 3996 x^{5} - 963 x^{4} - 2274 x^{3} + 1770 x^{2} - 142 x - 139 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5478279471638295786815488=2^{18}\cdot 37^{9}\cdot 401^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{5}{13} a^{15} + \frac{1}{13} a^{14} - \frac{5}{13} a^{12} - \frac{4}{13} a^{11} + \frac{2}{13} a^{9} + \frac{1}{13} a^{8} + \frac{6}{13} a^{7} - \frac{6}{13} a^{6} - \frac{5}{13} a^{5} - \frac{1}{13} a^{4} + \frac{2}{13} a^{2} + \frac{2}{13} a - \frac{3}{13}$, $\frac{1}{16258290301303549865353} a^{17} - \frac{14936435173197896417}{16258290301303549865353} a^{16} + \frac{3793139829551856261952}{16258290301303549865353} a^{15} + \frac{5216343458325873919553}{16258290301303549865353} a^{14} - \frac{5394245336888199272642}{16258290301303549865353} a^{13} + \frac{88518036344011830098}{560630700044949995357} a^{12} - \frac{2246214032542807983348}{16258290301303549865353} a^{11} + \frac{7419403778113469458747}{16258290301303549865353} a^{10} + \frac{3287585403488112656257}{16258290301303549865353} a^{9} + \frac{4949378919020514649041}{16258290301303549865353} a^{8} - \frac{582884376301168437697}{1250637715484888451181} a^{7} - \frac{3709089107425830997022}{16258290301303549865353} a^{6} - \frac{5869341836932103923503}{16258290301303549865353} a^{5} - \frac{3728888471012718785539}{16258290301303549865353} a^{4} - \frac{2355237366946914302825}{16258290301303549865353} a^{3} - \frac{4250093305953683710284}{16258290301303549865353} a^{2} + \frac{2732150746550383604874}{16258290301303549865353} a - \frac{2393866303331337736320}{16258290301303549865353}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 531026.499775 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 65 conjugacy class representatives for t18n773 are not computed |
| Character table for t18n773 is not computed |
Intermediate fields
| 3.3.148.1, 9.5.1299958592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 401 | Data not computed | ||||||