Normalized defining polynomial
\( x^{18} - 4 x^{17} + 5 x^{16} + 74 x^{15} - 246 x^{14} - 658 x^{13} + 869 x^{12} - 8 x^{11} - 2565 x^{10} + 7242 x^{9} - 31697 x^{8} - 147104 x^{7} + 8809 x^{6} + 427280 x^{5} + 182280 x^{4} - 339974 x^{3} - 71912 x^{2} + 105228 x - 16343 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(54252214194223652651571312590848=2^{18}\cdot 19^{9}\cdot 97\cdot 137^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 97, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{10} a^{16} - \frac{1}{10} a^{15} + \frac{1}{10} a^{14} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{3} + \frac{3}{10} a^{2} - \frac{1}{10} a - \frac{3}{10}$, $\frac{1}{125867685032799649815350025804622869017243912050} a^{17} - \frac{566907629068114427787348256791642918722034507}{25173537006559929963070005160924573803448782410} a^{16} + \frac{1335508386370206490556463234754980492978348283}{25173537006559929963070005160924573803448782410} a^{15} + \frac{13034374904954066013478915714967127539340286659}{125867685032799649815350025804622869017243912050} a^{14} + \frac{370452515279710291168067422670579580106175541}{2517353700655992996307000516092457380344878241} a^{13} + \frac{15124879303669339954570591393175645498857702671}{62933842516399824907675012902311434508621956025} a^{12} - \frac{26283481946166426440460340029318751652458875629}{62933842516399824907675012902311434508621956025} a^{11} - \frac{5399636115592295208313863452171454707506795831}{12586768503279964981535002580462286901724391205} a^{10} - \frac{2497908451173803367419129683429149804867770418}{12586768503279964981535002580462286901724391205} a^{9} + \frac{14234694785862278414174015536215387699664290036}{62933842516399824907675012902311434508621956025} a^{8} + \frac{2411083660018363033133634979387610882537950498}{62933842516399824907675012902311434508621956025} a^{7} + \frac{1227559830533279367513827596561628476306210672}{12586768503279964981535002580462286901724391205} a^{6} + \frac{30815484982883471049361481393165002586501724457}{62933842516399824907675012902311434508621956025} a^{5} + \frac{1895123815283798547975891844465425039564096948}{62933842516399824907675012902311434508621956025} a^{4} + \frac{38610254675437141403337720035309888496261388329}{125867685032799649815350025804622869017243912050} a^{3} - \frac{55237080044326376432225819702455093535643110573}{125867685032799649815350025804622869017243912050} a^{2} + \frac{19663668440829023835324374526762494055122528951}{125867685032799649815350025804622869017243912050} a - \frac{518009163389996040334969669138242136858175967}{2133350593776265251107627556010557101987184950}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1127290342.93 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36864 |
| The 108 conjugacy class representatives for t18n691 are not computed |
| Character table for t18n691 is not computed |
Intermediate fields
| 9.9.1128762254528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97 | Data not computed | ||||||
| $137$ | $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.4.0.1 | $x^{4} - x + 26$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 137.8.4.1 | $x^{8} + 975988 x^{4} - 2571353 x^{2} + 238138144036$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |