Normalized defining polynomial
\( x^{18} - 5 x^{17} - 14 x^{16} + 106 x^{15} - 72 x^{14} - 258 x^{13} - 120 x^{12} + 144 x^{11} + 5353 x^{10} - 9211 x^{9} - 11516 x^{8} + 50784 x^{7} - 49810 x^{6} - 29054 x^{5} + 123328 x^{4} - 136686 x^{3} + 61164 x^{2} + 8768 x - 12634 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(535603119673585465054020042752=2^{16}\cdot 19^{8}\cdot 37^{8}\cdot 137\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 37, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9}$, $\frac{1}{46701731525236901017608973007660688086} a^{17} + \frac{1229420508468528961468389998777087113}{46701731525236901017608973007660688086} a^{16} + \frac{3961404739622554571530990775320256545}{23350865762618450508804486503830344043} a^{15} - \frac{134911738577612884381763908540762159}{631104480070768932670391527130549839} a^{14} - \frac{13300490243090173884835312785344363087}{46701731525236901017608973007660688086} a^{13} + \frac{3158044345108982354209795773265772955}{46701731525236901017608973007660688086} a^{12} - \frac{2368197748496693661300950314702730518}{23350865762618450508804486503830344043} a^{11} + \frac{10513678647311224373343921822871699008}{23350865762618450508804486503830344043} a^{10} - \frac{5659558714677966650112686463471176476}{23350865762618450508804486503830344043} a^{9} + \frac{11638395719659970118804657284492361799}{23350865762618450508804486503830344043} a^{8} + \frac{165363013802110983205394815652472115}{631104480070768932670391527130549839} a^{7} + \frac{1528489221690753537938670575447359869}{23350865762618450508804486503830344043} a^{6} + \frac{4795395305159616070798720010110808558}{23350865762618450508804486503830344043} a^{5} + \frac{2139009070813221373943761817284077474}{23350865762618450508804486503830344043} a^{4} + \frac{8875004940759689449451207274670293901}{23350865762618450508804486503830344043} a^{3} - \frac{10515448324770082356822975292792393666}{23350865762618450508804486503830344043} a^{2} + \frac{9383445207448573277172082140532054988}{23350865762618450508804486503830344043} a - \frac{8723035843785721140601949212541268203}{23350865762618450508804486503830344043}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 879595587.77 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 88 conjugacy class representatives for t18n656 are not computed |
| Character table for t18n656 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.62526089134336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | R | $18$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ |
| 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.12.8.1 | $x^{12} - 114 x^{9} + 4332 x^{6} - 54872 x^{3} + 130321000$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 37 | Data not computed | ||||||
| 137 | Data not computed | ||||||