Normalized defining polynomial
\( x^{18} - 9 x^{17} + 27 x^{16} - 12 x^{15} - 259 x^{14} + 1309 x^{13} - 2648 x^{12} + 977 x^{11} + 11818 x^{10} - 42711 x^{9} + 62110 x^{8} - 24223 x^{7} - 130297 x^{6} + 330328 x^{5} - 327106 x^{4} + 143597 x^{3} + 162050 x^{2} - 184952 x - 2616 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(535041687054021837169645712179413=3^{22}\cdot 11^{8}\cdot 53\cdot 107^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 53, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} + \frac{5}{11} a^{11} - \frac{2}{11} a^{10} - \frac{1}{11} a^{9} - \frac{1}{11} a^{8} - \frac{1}{11} a^{7} - \frac{1}{11} a^{6} - \frac{1}{11} a^{5} + \frac{1}{11} a^{4} - \frac{5}{11} a^{3} + \frac{1}{11} a^{2} + \frac{4}{11} a - \frac{2}{11}$, $\frac{1}{11} a^{13} - \frac{5}{11} a^{11} - \frac{2}{11} a^{10} + \frac{4}{11} a^{9} + \frac{4}{11} a^{8} + \frac{4}{11} a^{7} + \frac{4}{11} a^{6} - \frac{5}{11} a^{5} + \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{1}{11} a^{2} - \frac{1}{11}$, $\frac{1}{638} a^{14} - \frac{7}{638} a^{13} - \frac{9}{319} a^{12} + \frac{199}{638} a^{11} - \frac{9}{58} a^{10} - \frac{10}{29} a^{9} + \frac{13}{58} a^{8} + \frac{3}{58} a^{7} - \frac{295}{638} a^{6} - \frac{14}{319} a^{5} + \frac{281}{638} a^{4} - \frac{173}{638} a^{3} - \frac{47}{319} a^{2} + \frac{277}{638} a - \frac{4}{29}$, $\frac{1}{1914} a^{15} - \frac{67}{1914} a^{13} + \frac{73}{1914} a^{12} + \frac{3}{319} a^{11} - \frac{83}{174} a^{10} - \frac{11}{174} a^{9} + \frac{6}{29} a^{8} + \frac{287}{957} a^{7} - \frac{817}{1914} a^{6} + \frac{241}{638} a^{5} - \frac{379}{957} a^{4} - \frac{1}{66} a^{3} - \frac{127}{638} a^{2} + \frac{575}{1914} a + \frac{10}{29}$, $\frac{1}{11323524141754836} a^{16} - \frac{2}{2830881035438709} a^{15} + \frac{848117383895}{11323524141754836} a^{14} - \frac{1978940562375}{3774508047251612} a^{13} + \frac{68872145160202}{2830881035438709} a^{12} - \frac{1575752801912587}{11323524141754836} a^{11} + \frac{1180094674527805}{11323524141754836} a^{10} - \frac{1460545540202003}{5661762070877418} a^{9} + \frac{708913552279729}{2830881035438709} a^{8} + \frac{138911512817095}{3774508047251612} a^{7} - \frac{332160185530669}{11323524141754836} a^{6} + \frac{237715265612962}{2830881035438709} a^{5} + \frac{2294587263546755}{11323524141754836} a^{4} - \frac{2721817711933769}{11323524141754836} a^{3} + \frac{216039797438681}{11323524141754836} a^{2} - \frac{306774821045915}{5661762070877418} a - \frac{335759581338233}{943627011812903}$, $\frac{1}{58644531530148295644} a^{17} + \frac{1}{22721631743567724} a^{16} - \frac{11807800883129321}{58644531530148295644} a^{15} - \frac{8822892638254}{444276754016274967} a^{14} - \frac{376021921511336935}{58644531530148295644} a^{13} + \frac{2220012026801571121}{58644531530148295644} a^{12} - \frac{6374595173780882120}{14661132882537073911} a^{11} + \frac{462767269997104429}{1777107016065099868} a^{10} - \frac{14372618118544965467}{29322265765074147822} a^{9} - \frac{6964805955875540855}{19548177176716098548} a^{8} - \frac{7266234999785156731}{29322265765074147822} a^{7} + \frac{7148074508854596005}{58644531530148295644} a^{6} - \frac{21231412051485785557}{58644531530148295644} a^{5} - \frac{1383541023215290768}{4887044294179024637} a^{4} + \frac{7699566851132004449}{29322265765074147822} a^{3} - \frac{3495250144585110985}{58644531530148295644} a^{2} - \frac{751116259926947345}{14661132882537073911} a + \frac{2181097771383969974}{4887044294179024637}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50740074318.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n662 are not computed |
| Character table for t18n662 is not computed |
Intermediate fields
| 3.3.321.1, 9.9.3177282828271761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.12.22.44 | $x^{12} + 36 x^{11} - 27 x^{10} - 33 x^{9} - 18 x^{8} + 9 x^{7} - 24 x^{6} - 36 x^{3} - 27 x^{2} - 27 x + 36$ | $6$ | $2$ | $22$ | $D_6$ | $[5/2]_{2}^{2}$ | |
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $53$ | $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $107$ | 107.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 107.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |