Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 101 x^{14} + 469 x^{13} - 1499 x^{12} + 635 x^{11} + 3091 x^{10} - 4521 x^{9} - 74 x^{8} + 5339 x^{7} - 4614 x^{6} - 224 x^{5} + 2755 x^{4} - 1833 x^{3} + 411 x^{2} + 41 x - 25 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42617365285248096686111328125=5^{9}\cdot 139^{4}\cdot 197^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 139, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} - \frac{6}{17} a^{11} - \frac{8}{17} a^{10} - \frac{7}{17} a^{9} + \frac{5}{17} a^{8} + \frac{7}{17} a^{7} + \frac{4}{17} a^{6} - \frac{5}{17} a^{5} + \frac{4}{17} a^{4} - \frac{2}{17} a^{3} + \frac{8}{17} a^{2} - \frac{1}{17} a - \frac{7}{17}$, $\frac{1}{17} a^{13} + \frac{7}{17} a^{11} - \frac{4}{17} a^{10} - \frac{3}{17} a^{9} + \frac{3}{17} a^{8} - \frac{5}{17} a^{7} + \frac{2}{17} a^{6} + \frac{8}{17} a^{5} + \frac{5}{17} a^{4} - \frac{4}{17} a^{3} - \frac{4}{17} a^{2} + \frac{4}{17} a - \frac{8}{17}$, $\frac{1}{17} a^{14} + \frac{4}{17} a^{11} + \frac{2}{17} a^{10} + \frac{1}{17} a^{9} - \frac{6}{17} a^{8} + \frac{4}{17} a^{7} - \frac{3}{17} a^{6} + \frac{6}{17} a^{5} + \frac{2}{17} a^{4} - \frac{7}{17} a^{3} - \frac{1}{17} a^{2} - \frac{1}{17} a - \frac{2}{17}$, $\frac{1}{17} a^{15} - \frac{8}{17} a^{11} - \frac{1}{17} a^{10} + \frac{5}{17} a^{9} + \frac{1}{17} a^{8} + \frac{3}{17} a^{7} + \frac{7}{17} a^{6} + \frac{5}{17} a^{5} - \frac{6}{17} a^{4} + \frac{7}{17} a^{3} + \frac{1}{17} a^{2} + \frac{2}{17} a - \frac{6}{17}$, $\frac{1}{1343} a^{16} - \frac{8}{1343} a^{15} - \frac{2}{79} a^{14} - \frac{1}{79} a^{13} + \frac{3}{1343} a^{12} - \frac{3}{1343} a^{11} - \frac{670}{1343} a^{10} - \frac{235}{1343} a^{9} + \frac{33}{1343} a^{8} + \frac{43}{1343} a^{7} - \frac{517}{1343} a^{6} + \frac{52}{1343} a^{5} + \frac{524}{1343} a^{4} - \frac{315}{1343} a^{3} - \frac{20}{1343} a^{2} - \frac{101}{1343} a + \frac{583}{1343}$, $\frac{1}{452591} a^{17} + \frac{160}{452591} a^{16} + \frac{6522}{452591} a^{15} - \frac{11338}{452591} a^{14} + \frac{7575}{452591} a^{13} + \frac{6110}{452591} a^{12} + \frac{90861}{452591} a^{11} + \frac{3098}{452591} a^{10} - \frac{129823}{452591} a^{9} + \frac{58122}{452591} a^{8} - \frac{147264}{452591} a^{7} - \frac{101656}{452591} a^{6} - \frac{140366}{452591} a^{5} + \frac{154709}{452591} a^{4} - \frac{171124}{452591} a^{3} - \frac{29768}{452591} a^{2} + \frac{39784}{452591} a - \frac{145534}{452591}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95804018.3668 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 84 conjugacy class representatives for t18n775 are not computed |
| Character table for t18n775 is not computed |
Intermediate fields
| 3.3.985.1, 9.9.92322657333125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $139$ | 139.6.4.1 | $x^{6} + 695 x^{3} + 154568$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 139.12.0.1 | $x^{12} - x + 22$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $197$ | 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |