Normalized defining polynomial
\( x^{18} - 9 x^{17} + 27 x^{16} - 12 x^{15} - 277 x^{14} + 1435 x^{13} - 3800 x^{12} + 6251 x^{11} - 5259 x^{10} - 2668 x^{9} + 13083 x^{8} - 15507 x^{7} + 4893 x^{6} + 9824 x^{5} - 10793 x^{4} + 1504 x^{3} + 2708 x^{2} - 1401 x - 293 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(424289336240056817456948980557=3^{10}\cdot 53^{5}\cdot 107^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 53, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2283722808906603} a^{16} - \frac{8}{2283722808906603} a^{15} - \frac{185597817743780}{761240936302201} a^{14} - \frac{669891445193686}{2283722808906603} a^{13} + \frac{2556071884118}{7204172898759} a^{12} - \frac{240168517962696}{761240936302201} a^{11} + \frac{224520546607259}{761240936302201} a^{10} + \frac{212175851554109}{2283722808906603} a^{9} - \frac{1099014177711982}{2283722808906603} a^{8} + \frac{382555125859046}{2283722808906603} a^{7} - \frac{158448163159809}{761240936302201} a^{6} - \frac{1108025768545319}{2283722808906603} a^{5} - \frac{510686703598199}{2283722808906603} a^{4} + \frac{500483814172973}{2283722808906603} a^{3} + \frac{964867686025397}{2283722808906603} a^{2} - \frac{687380121957263}{2283722808906603} a - \frac{118463042503199}{2283722808906603}$, $\frac{1}{1194387029058153369} a^{17} + \frac{253}{1194387029058153369} a^{16} + \frac{11994257163090740}{398129009686051123} a^{15} - \frac{415472274189552580}{1194387029058153369} a^{14} - \frac{62128974771863093}{1194387029058153369} a^{13} - \frac{4347873783488072}{398129009686051123} a^{12} - \frac{144673483762294105}{398129009686051123} a^{11} - \frac{225923450522524222}{1194387029058153369} a^{10} - \frac{420735461174662957}{1194387029058153369} a^{9} - \frac{446320741880430466}{1194387029058153369} a^{8} - \frac{136632881008813630}{398129009686051123} a^{7} + \frac{16417876629533620}{1194387029058153369} a^{6} - \frac{250882124542514207}{1194387029058153369} a^{5} - \frac{304067956492952191}{1194387029058153369} a^{4} - \frac{268060348373484175}{1194387029058153369} a^{3} - \frac{217020089895182261}{1194387029058153369} a^{2} - \frac{79040871281458310}{1194387029058153369} a + \frac{173914021887354329}{398129009686051123}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 433796703.158 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 180 conjugacy class representatives for t18n881 are not computed |
| Character table for t18n881 is not computed |
Intermediate fields
| 3.3.321.1, 9.9.29824410535929.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $53$ | 53.6.5.2 | $x^{6} + 106$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 53.12.0.1 | $x^{12} - x + 12$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $107$ | 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 107.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 107.8.6.1 | $x^{8} - 3317 x^{4} + 7155625$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |