Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} + x^{15} - 164 x^{14} + 432 x^{13} - 826 x^{12} - 2375 x^{11} + 15739 x^{10} - 10896 x^{9} - 43958 x^{8} + 158094 x^{7} - 37363 x^{6} - 657180 x^{5} + 191202 x^{4} + 1207011 x^{3} + 74572 x^{2} - 827552 x - 325399 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41224468721177639474720732921=41^{9}\cdot 11221481^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 11221481$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{16270477756281147435522848410639120053774472248473} a^{17} + \frac{544497251499578758728034360722327595762064779310}{16270477756281147435522848410639120053774472248473} a^{16} - \frac{5485071218298718786702560686907359921548744690764}{16270477756281147435522848410639120053774472248473} a^{15} - \frac{4729385699454822841187602517579921297871005250351}{16270477756281147435522848410639120053774472248473} a^{14} + \frac{5023534166267757454932146000154086566794029116157}{16270477756281147435522848410639120053774472248473} a^{13} + \frac{3982600564900880511849140049204232490651351584683}{16270477756281147435522848410639120053774472248473} a^{12} - \frac{1517277234722778809553888077939044286320464665173}{16270477756281147435522848410639120053774472248473} a^{11} - \frac{2337458195224467645198901410375459078553335367813}{16270477756281147435522848410639120053774472248473} a^{10} - \frac{662344016111964170372383184804500042932725367784}{16270477756281147435522848410639120053774472248473} a^{9} + \frac{4361467239695374521293412714038924942297618451112}{16270477756281147435522848410639120053774472248473} a^{8} + \frac{4129292404743805881062231224297962632922385553052}{16270477756281147435522848410639120053774472248473} a^{7} - \frac{6485111013159948753687397390310020712248660940777}{16270477756281147435522848410639120053774472248473} a^{6} + \frac{5969215978560813345476154408328921718313551423746}{16270477756281147435522848410639120053774472248473} a^{5} + \frac{5540131944111547359503110389230324618392065495562}{16270477756281147435522848410639120053774472248473} a^{4} + \frac{7708591050777766807589107794013940893799015998096}{16270477756281147435522848410639120053774472248473} a^{3} + \frac{5913248427533566734548670388297650353237551607792}{16270477756281147435522848410639120053774472248473} a^{2} + \frac{3561188649976857021429427276050394037077842362317}{16270477756281147435522848410639120053774472248473} a + \frac{7596463424535388175325562639136171731337029612226}{16270477756281147435522848410639120053774472248473}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37185333.3537 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 725760 |
| The 60 conjugacy class representatives for t18n913 are not computed |
| Character table for t18n913 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 9.5.460080721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 11221481 | Data not computed | ||||||