Normalized defining polynomial
\( x^{18} - 5 x^{17} + 5 x^{16} + 23 x^{15} - 103 x^{14} + 149 x^{13} + 84 x^{12} - 583 x^{11} + 624 x^{10} - 141 x^{9} - 309 x^{8} + 764 x^{7} - 692 x^{6} + 138 x^{5} + 151 x^{4} - 110 x^{3} + 21 x^{2} + 3 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3683108409844954690118689=19^{16}\cdot 113^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{37} a^{14} + \frac{10}{37} a^{13} - \frac{15}{37} a^{12} + \frac{3}{37} a^{11} + \frac{13}{37} a^{10} - \frac{16}{37} a^{9} + \frac{18}{37} a^{8} - \frac{8}{37} a^{7} - \frac{4}{37} a^{6} - \frac{3}{37} a^{5} + \frac{13}{37} a^{4} - \frac{12}{37} a^{3} - \frac{11}{37} a^{2} + \frac{12}{37} a + \frac{15}{37}$, $\frac{1}{37} a^{15} - \frac{4}{37} a^{13} + \frac{5}{37} a^{12} - \frac{17}{37} a^{11} + \frac{2}{37} a^{10} - \frac{7}{37} a^{9} - \frac{3}{37} a^{8} + \frac{2}{37} a^{7} + \frac{6}{37} a^{5} + \frac{6}{37} a^{4} - \frac{2}{37} a^{3} + \frac{11}{37} a^{2} + \frac{6}{37} a - \frac{2}{37}$, $\frac{1}{37} a^{16} + \frac{8}{37} a^{13} - \frac{3}{37} a^{12} + \frac{14}{37} a^{11} + \frac{8}{37} a^{10} + \frac{7}{37} a^{9} + \frac{5}{37} a^{7} - \frac{10}{37} a^{6} - \frac{6}{37} a^{5} + \frac{13}{37} a^{4} - \frac{1}{37} a^{2} + \frac{9}{37} a - \frac{14}{37}$, $\frac{1}{76998823957625813} a^{17} - \frac{399469617863490}{76998823957625813} a^{16} + \frac{672300783143947}{76998823957625813} a^{15} - \frac{77792625282744}{76998823957625813} a^{14} - \frac{9890854384862165}{76998823957625813} a^{13} + \frac{34280262183499178}{76998823957625813} a^{12} - \frac{25063808114239185}{76998823957625813} a^{11} - \frac{2610560911655476}{76998823957625813} a^{10} - \frac{16259137226463119}{76998823957625813} a^{9} + \frac{30742381514346674}{76998823957625813} a^{8} + \frac{6833474516834911}{76998823957625813} a^{7} - \frac{19146165942159894}{76998823957625813} a^{6} + \frac{31332679431565844}{76998823957625813} a^{5} + \frac{712136708772604}{2081049296152049} a^{4} - \frac{29768887310303105}{76998823957625813} a^{3} + \frac{17250213710762724}{76998823957625813} a^{2} - \frac{7344012750553674}{76998823957625813} a + \frac{24820708427495937}{76998823957625813}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 441589.256764 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 16 conjugacy class representatives for t18n177 |
| Character table for t18n177 |
Intermediate fields
| 3.3.361.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| $113$ | $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |