Normalized defining polynomial
\( x^{18} - 9 x^{17} + 16 x^{16} + 76 x^{15} - 375 x^{14} + 581 x^{13} + 370 x^{12} - 3663 x^{11} + 7505 x^{10} - 6450 x^{9} - 3302 x^{8} + 17439 x^{7} - 23691 x^{6} + 16778 x^{5} - 5340 x^{4} - 880 x^{3} + 1456 x^{2} - 512 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3622476049246088218319462890625=5^{10}\cdot 17\cdot 139^{4}\cdot 197^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17, 139, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{13} + \frac{1}{24} a^{12} + \frac{1}{24} a^{11} - \frac{1}{8} a^{10} + \frac{1}{12} a^{9} + \frac{1}{3} a^{7} + \frac{5}{24} a^{6} - \frac{5}{24} a^{5} + \frac{7}{24} a^{4} - \frac{11}{24} a^{3} + \frac{1}{12} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{720} a^{14} - \frac{7}{720} a^{13} + \frac{41}{720} a^{12} + \frac{5}{144} a^{11} - \frac{7}{72} a^{10} - \frac{1}{45} a^{9} - \frac{17}{90} a^{8} - \frac{59}{720} a^{7} + \frac{41}{240} a^{6} - \frac{121}{720} a^{5} + \frac{17}{720} a^{4} + \frac{11}{24} a^{3} - \frac{5}{18} a^{2} + \frac{1}{10} a + \frac{1}{45}$, $\frac{1}{2160} a^{15} - \frac{1}{270} a^{13} + \frac{11}{180} a^{12} - \frac{5}{144} a^{11} + \frac{17}{1080} a^{10} - \frac{17}{540} a^{9} + \frac{143}{720} a^{8} - \frac{101}{216} a^{7} + \frac{1}{108} a^{6} + \frac{43}{216} a^{5} + \frac{629}{2160} a^{4} + \frac{13}{216} a^{3} - \frac{107}{540} a^{2} - \frac{23}{54} a - \frac{38}{135}$, $\frac{1}{22330080} a^{16} - \frac{1}{2791260} a^{15} + \frac{4469}{11165040} a^{14} - \frac{31213}{11165040} a^{13} + \frac{32117}{1488672} a^{12} - \frac{519839}{5582520} a^{11} + \frac{16813}{1116504} a^{10} + \frac{4727557}{22330080} a^{9} + \frac{2070551}{11165040} a^{8} + \frac{96467}{1240560} a^{7} - \frac{12079}{206760} a^{6} - \frac{1512859}{7443360} a^{5} + \frac{168071}{372168} a^{4} - \frac{86227}{5582520} a^{3} - \frac{221447}{2791260} a^{2} + \frac{682199}{1395630} a - \frac{67034}{139563}$, $\frac{1}{66990240} a^{17} - \frac{1}{66990240} a^{16} + \frac{4441}{33495120} a^{15} + \frac{7}{3349512} a^{14} + \frac{44773}{66990240} a^{13} + \frac{1292929}{66990240} a^{12} - \frac{63629}{1395630} a^{11} + \frac{2360459}{22330080} a^{10} + \frac{14903921}{66990240} a^{9} - \frac{69275}{1674756} a^{8} + \frac{120559}{744336} a^{7} + \frac{2886593}{22330080} a^{6} - \frac{803177}{2481120} a^{5} - \frac{247199}{2093445} a^{4} + \frac{4536037}{16747560} a^{3} - \frac{185731}{8373780} a^{2} - \frac{14438}{77535} a + \frac{89014}{418689}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 385346700.594 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 168 conjugacy class representatives for t18n835 are not computed |
| Character table for t18n835 is not computed |
Intermediate fields
| 3.3.985.1, 9.9.92322657333125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $18$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 139 | Data not computed | ||||||
| $197$ | $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 197.2.1.2 | $x^{2} + 394$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.2 | $x^{2} + 394$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 197.8.4.1 | $x^{8} + 1397124 x^{4} - 7645373 x^{2} + 487988867844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |