Normalized defining polynomial
\( x^{18} - 6 x^{16} - 246 x^{14} + 703 x^{12} + 6456 x^{10} - 11796 x^{8} - 39437 x^{6} + 23142 x^{4} - 846 x^{2} - 423 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(331429184306074586121285588221952=2^{20}\cdot 3^{24}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{15} + \frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{3} a^{3} - \frac{1}{2}$, $\frac{1}{63773612053121178372} a^{16} - \frac{1}{12} a^{15} - \frac{2014346682351504559}{10628935342186863062} a^{14} - \frac{1}{4} a^{13} - \frac{2048175038479217115}{21257870684373726124} a^{12} - \frac{4036899227462450101}{31886806026560589186} a^{10} + \frac{1}{6} a^{9} + \frac{1124010782670534964}{5314467671093431531} a^{8} + \frac{569700928079435604}{5314467671093431531} a^{6} - \frac{29975640919694057927}{63773612053121178372} a^{4} - \frac{1}{12} a^{3} - \frac{2851647527694430291}{10628935342186863062} a^{2} + \frac{1}{4} a + \frac{8600189721025215135}{21257870684373726124}$, $\frac{1}{63773612053121178372} a^{17} + \frac{1285774306390422413}{21257870684373726124} a^{15} - \frac{1}{4} a^{14} + \frac{816573158153553604}{5314467671093431531} a^{13} - \frac{1}{4} a^{12} - \frac{4036899227462450101}{31886806026560589186} a^{11} + \frac{1124010782670534964}{5314467671093431531} a^{9} + \frac{569700928079435604}{5314467671093431531} a^{7} - \frac{1}{2} a^{6} - \frac{29975640919694057927}{63773612053121178372} a^{5} + \frac{10240107957891434011}{21257870684373726124} a^{3} + \frac{1}{4} a^{2} + \frac{821430512482945901}{5314467671093431531} a - \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25075498476.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 74 conjugacy class representatives for t18n781 are not computed |
| Character table for t18n781 is not computed |
Intermediate fields
| 3.3.564.1, 9.9.165968803220544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.12.27 | $x^{12} - 18 x^{10} + 171 x^{8} + 116 x^{6} - 313 x^{4} + 190 x^{2} + 877$ | $6$ | $2$ | $12$ | 12T30 | $[4/3, 4/3]_{3}^{4}$ | |
| $3$ | 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.6.9.16 | $x^{6} + 3 x^{4} + 6 x^{3} + 3$ | $6$ | $1$ | $9$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ | |
| 3.6.9.16 | $x^{6} + 3 x^{4} + 6 x^{3} + 3$ | $6$ | $1$ | $9$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ | |
| 47 | Data not computed | ||||||