Normalized defining polynomial
\( x^{18} - 7 x^{17} - 91 x^{16} + 823 x^{15} + 2288 x^{14} - 37506 x^{13} + 27317 x^{12} + 802216 x^{11} - 2365365 x^{10} - 6737760 x^{9} + 43676548 x^{8} - 26267862 x^{7} - 298465159 x^{6} + 784800422 x^{5} - 39173568 x^{4} - 3079626438 x^{3} + 6140547357 x^{2} - 5276020218 x + 1789324621 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(315354497788882418993233673419533203125=5^{9}\cdot 7^{12}\cdot 41\cdot 139^{2}\cdot 121349929^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $137.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 41, 139, 121349929$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} - \frac{3}{7} a^{12} - \frac{1}{7} a^{11} + \frac{3}{7} a^{9} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} + \frac{2}{7} a^{4} + \frac{1}{7} a^{3}$, $\frac{1}{91} a^{16} + \frac{1}{91} a^{15} + \frac{6}{13} a^{14} - \frac{3}{91} a^{13} - \frac{3}{7} a^{12} + \frac{27}{91} a^{11} + \frac{38}{91} a^{10} + \frac{12}{91} a^{9} + \frac{3}{13} a^{8} - \frac{38}{91} a^{7} + \frac{2}{7} a^{6} - \frac{41}{91} a^{5} + \frac{31}{91} a^{4} + \frac{1}{91} a^{3} - \frac{5}{13} a^{2} + \frac{5}{13} a + \frac{5}{13}$, $\frac{1}{2128244926015877495218448451301082388834713} a^{17} + \frac{6245510119022261856061107666580137207665}{2128244926015877495218448451301082388834713} a^{16} - \frac{142083562757723924778464322736190261938055}{2128244926015877495218448451301082388834713} a^{15} + \frac{417425771847888288567721628194702661379730}{2128244926015877495218448451301082388834713} a^{14} + \frac{321770336935413654068242828586571169682593}{2128244926015877495218448451301082388834713} a^{13} - \frac{88246371319354398033803122664145413972086}{2128244926015877495218448451301082388834713} a^{12} + \frac{492941254070887915768686148332349006094517}{2128244926015877495218448451301082388834713} a^{11} + \frac{759015038069328819750647615063597709153805}{2128244926015877495218448451301082388834713} a^{10} + \frac{9545629529959717886215898836642578129206}{163711148155067499632188342407775568371901} a^{9} + \frac{48176661765865205519091290947123476814021}{163711148155067499632188342407775568371901} a^{8} - \frac{917114336709633573820308068988251879197800}{2128244926015877495218448451301082388834713} a^{7} + \frac{81780020076184285500203605839242371509573}{2128244926015877495218448451301082388834713} a^{6} + \frac{793488290013066002825380249778052331396863}{2128244926015877495218448451301082388834713} a^{5} + \frac{8202084522773986460297352778000050496187}{304034989430839642174064064471583198404959} a^{4} + \frac{783466762824395193152689321095936366817284}{2128244926015877495218448451301082388834713} a^{3} - \frac{135536448723228412179828957163753896759131}{304034989430839642174064064471583198404959} a^{2} - \frac{84230836677748837604274793233349667802876}{304034989430839642174064064471583198404959} a + \frac{150026792073135114367088579313533874804430}{304034989430839642174064064471583198404959}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1480622603460 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 159 conjugacy class representatives for t18n857 are not computed |
| Character table for t18n857 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | $18$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 41 | Data not computed | ||||||
| $139$ | $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.3.2.2 | $x^{3} + 556$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 121349929 | Data not computed | ||||||