Normalized defining polynomial
\( x^{18} - 12 x^{16} - 2 x^{15} + 111 x^{14} + 66 x^{13} - 1112 x^{12} - 2910 x^{11} + 996 x^{10} + 17366 x^{9} + 32466 x^{8} + 10296 x^{7} - 55584 x^{6} - 107592 x^{5} - 95673 x^{4} - 47316 x^{3} - 13008 x^{2} - 1812 x - 97 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(281041488075161284097055916032=2^{18}\cdot 3^{18}\cdot 7^{13}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2}$, $\frac{1}{14} a^{15} + \frac{3}{14} a^{14} - \frac{3}{7} a^{13} + \frac{3}{7} a^{11} - \frac{3}{7} a^{10} - \frac{1}{7} a^{8} + \frac{2}{7} a^{7} - \frac{2}{7} a^{6} + \frac{1}{7} a^{5} + \frac{3}{14} a - \frac{1}{14}$, $\frac{1}{28} a^{16} - \frac{1}{28} a^{14} - \frac{5}{14} a^{13} - \frac{2}{7} a^{12} + \frac{1}{7} a^{11} + \frac{1}{7} a^{10} - \frac{1}{14} a^{9} - \frac{1}{7} a^{8} + \frac{3}{7} a^{7} - \frac{1}{2} a^{6} + \frac{2}{7} a^{5} - \frac{1}{2} a^{4} - \frac{11}{28} a^{2} + \frac{1}{7} a + \frac{3}{28}$, $\frac{1}{260378689023335432006044} a^{17} + \frac{1021941874247481941204}{65094672255833858001511} a^{16} - \frac{1915602165436488035767}{260378689023335432006044} a^{15} - \frac{19317537323788516998679}{130189344511667716003022} a^{14} - \frac{26331409502422931231}{73887255681990758231} a^{13} - \frac{11092421276809414933113}{65094672255833858001511} a^{12} + \frac{13742989813534738747423}{65094672255833858001511} a^{11} - \frac{59515768325367103149951}{130189344511667716003022} a^{10} + \frac{1561282262803678690714}{9299238893690551143073} a^{9} + \frac{3410735462921745054493}{65094672255833858001511} a^{8} + \frac{24703518941128813827799}{130189344511667716003022} a^{7} + \frac{262015994202941274074}{65094672255833858001511} a^{6} + \frac{3055793171029417795367}{130189344511667716003022} a^{5} + \frac{328297318880113315847}{9299238893690551143073} a^{4} + \frac{1820420711854381064557}{260378689023335432006044} a^{3} + \frac{14446000065036413189116}{65094672255833858001511} a^{2} + \frac{32678126412587713306489}{260378689023335432006044} a + \frac{141365731865223148043}{671079095420967608263}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 188591961.036 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n766 are not computed |
| Character table for t18n766 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.25046451847872.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | $18$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.9.9.5 | $x^{9} + 3 x^{7} + 3 x^{6} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ |
| 3.9.9.5 | $x^{9} + 3 x^{7} + 3 x^{6} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.4.2 | $x^{6} - 13 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |