Properties

Label 18.10.2799928238...0217.7
Degree $18$
Signature $[10, 4]$
Discriminant $7^{12}\cdot 53^{6}\cdot 97^{3}$
Root discriminant $29.46$
Ramified primes $7, 53, 97$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T367

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-127, 1494, -6158, 11417, -8918, -2955, 13476, -12089, 2094, 4492, -3471, 346, 687, -306, -22, 48, -6, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 4*x^17 - 6*x^16 + 48*x^15 - 22*x^14 - 306*x^13 + 687*x^12 + 346*x^11 - 3471*x^10 + 4492*x^9 + 2094*x^8 - 12089*x^7 + 13476*x^6 - 2955*x^5 - 8918*x^4 + 11417*x^3 - 6158*x^2 + 1494*x - 127)
 
gp: K = bnfinit(x^18 - 4*x^17 - 6*x^16 + 48*x^15 - 22*x^14 - 306*x^13 + 687*x^12 + 346*x^11 - 3471*x^10 + 4492*x^9 + 2094*x^8 - 12089*x^7 + 13476*x^6 - 2955*x^5 - 8918*x^4 + 11417*x^3 - 6158*x^2 + 1494*x - 127, 1)
 

Normalized defining polynomial

\( x^{18} - 4 x^{17} - 6 x^{16} + 48 x^{15} - 22 x^{14} - 306 x^{13} + 687 x^{12} + 346 x^{11} - 3471 x^{10} + 4492 x^{9} + 2094 x^{8} - 12089 x^{7} + 13476 x^{6} - 2955 x^{5} - 8918 x^{4} + 11417 x^{3} - 6158 x^{2} + 1494 x - 127 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(279992823820843547402730217=7^{12}\cdot 53^{6}\cdot 97^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.46$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 53, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{97} a^{15} - \frac{13}{97} a^{14} - \frac{45}{97} a^{13} + \frac{36}{97} a^{12} + \frac{47}{97} a^{11} - \frac{13}{97} a^{10} + \frac{27}{97} a^{9} + \frac{27}{97} a^{8} - \frac{3}{97} a^{7} - \frac{39}{97} a^{6} + \frac{45}{97} a^{5} - \frac{45}{97} a^{4} - \frac{22}{97} a^{3} - \frac{32}{97} a^{2} - \frac{30}{97} a + \frac{47}{97}$, $\frac{1}{291} a^{16} + \frac{77}{291} a^{14} - \frac{64}{291} a^{13} - \frac{67}{291} a^{12} - \frac{27}{97} a^{11} + \frac{52}{291} a^{10} - \frac{10}{291} a^{9} - \frac{137}{291} a^{8} - \frac{26}{97} a^{7} + \frac{23}{291} a^{6} - \frac{14}{97} a^{5} - \frac{122}{291} a^{4} + \frac{70}{291} a^{3} + \frac{136}{291} a^{2} - \frac{52}{291} a + \frac{29}{291}$, $\frac{1}{54601763514567439347} a^{17} + \frac{85506809138736211}{54601763514567439347} a^{16} - \frac{222130858906824760}{54601763514567439347} a^{15} - \frac{25787385474108176594}{54601763514567439347} a^{14} + \frac{11862698351373614992}{54601763514567439347} a^{13} + \frac{2656882363064089538}{54601763514567439347} a^{12} + \frac{3968017424079211858}{54601763514567439347} a^{11} + \frac{6443071693989155162}{18200587838189146449} a^{10} + \frac{1122615579430295909}{18200587838189146449} a^{9} + \frac{6745814467057338862}{54601763514567439347} a^{8} + \frac{9670751826455812652}{54601763514567439347} a^{7} + \frac{10817932317672321596}{54601763514567439347} a^{6} + \frac{17958554459908737655}{54601763514567439347} a^{5} - \frac{2190096629799094369}{54601763514567439347} a^{4} - \frac{15067826164353338482}{54601763514567439347} a^{3} + \frac{1545888952750528654}{18200587838189146449} a^{2} + \frac{15359990934083084401}{54601763514567439347} a - \frac{16060268168203611454}{54601763514567439347}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3343187.00358 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T367:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2304
The 48 conjugacy class representatives for t18n367
Character table for t18n367 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 3.3.2597.1, 9.9.17515230173.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ R ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
$53$53.3.0.1$x^{3} - x + 8$$1$$3$$0$$C_3$$[\ ]^{3}$
53.3.0.1$x^{3} - x + 8$$1$$3$$0$$C_3$$[\ ]^{3}$
53.12.6.1$x^{12} + 2382032 x^{6} - 418195493 x^{2} + 1418519112256$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
97Data not computed