Normalized defining polynomial
\( x^{18} - 5 x^{17} + 17 x^{16} - 73 x^{15} - 144 x^{14} + 240 x^{12} + 20515 x^{11} - 21536 x^{10} + 57559 x^{9} - 221081 x^{8} - 1518837 x^{7} + 2729255 x^{6} - 849928 x^{5} + 3820465 x^{4} + 34629088 x^{3} - 54139751 x^{2} - 56431495 x + 47694371 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27743318282861835289866224169592661=101^{5}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $101, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{39} a^{14} + \frac{5}{39} a^{13} + \frac{1}{39} a^{12} - \frac{2}{39} a^{11} - \frac{5}{39} a^{10} - \frac{1}{3} a^{9} + \frac{8}{39} a^{8} - \frac{11}{39} a^{6} - \frac{16}{39} a^{5} - \frac{17}{39} a^{4} - \frac{4}{39} a^{3} - \frac{2}{13} a^{2} - \frac{19}{39} a - \frac{1}{13}$, $\frac{1}{39} a^{15} + \frac{2}{39} a^{13} + \frac{2}{13} a^{12} + \frac{5}{39} a^{11} - \frac{1}{39} a^{10} - \frac{6}{13} a^{9} + \frac{4}{13} a^{8} - \frac{11}{39} a^{7} - \frac{5}{13} a^{5} - \frac{10}{39} a^{4} + \frac{14}{39} a^{3} - \frac{2}{39} a^{2} - \frac{4}{13} a + \frac{2}{39}$, $\frac{1}{8931} a^{16} - \frac{9}{2977} a^{15} + \frac{41}{8931} a^{14} + \frac{446}{8931} a^{13} + \frac{337}{8931} a^{12} + \frac{800}{8931} a^{11} - \frac{602}{8931} a^{10} + \frac{88}{2977} a^{9} + \frac{1223}{2977} a^{8} - \frac{2576}{8931} a^{7} + \frac{1285}{8931} a^{6} + \frac{149}{2977} a^{5} - \frac{2810}{8931} a^{4} - \frac{2551}{8931} a^{3} - \frac{3286}{8931} a^{2} - \frac{2963}{8931} a + \frac{1753}{8931}$, $\frac{1}{15168205864253466906102857092604360498520048205542131945301} a^{17} + \frac{49916175671856181096796508243814070317281138650850620}{15168205864253466906102857092604360498520048205542131945301} a^{16} - \frac{168251433329793946584219338403241534842867305057565529193}{15168205864253466906102857092604360498520048205542131945301} a^{15} - \frac{4107055841711709978814366748601973330687918360768733231}{388928355493678638618021976733445140987693543731849537059} a^{14} - \frac{137858837213775585219826494432229559576843369272232223352}{1685356207139274100678095232511595610946672022838014660589} a^{13} + \frac{19224641784002076563340996341732771228176375912607300301}{1685356207139274100678095232511595610946672022838014660589} a^{12} - \frac{544244901795468299465577742339515802339992347867218228577}{5056068621417822302034285697534786832840016068514043981767} a^{11} + \frac{2386214185374139844514266329415361284677836413145037582309}{15168205864253466906102857092604360498520048205542131945301} a^{10} + \frac{4633651484702817856886817401423612476172481160125324424166}{15168205864253466906102857092604360498520048205542131945301} a^{9} - \frac{2361272695764408350298108096680880745884467136469918024078}{5056068621417822302034285697534786832840016068514043981767} a^{8} + \frac{3669472766663894130420876059603510184979551860871083847106}{15168205864253466906102857092604360498520048205542131945301} a^{7} + \frac{4444240870062956760198180792375291489630940110591216836488}{15168205864253466906102857092604360498520048205542131945301} a^{6} - \frac{2111297855438934453558960343728167064492578775579692091928}{5056068621417822302034285697534786832840016068514043981767} a^{5} - \frac{5839463950528397627163021393253005057494934788084117317411}{15168205864253466906102857092604360498520048205542131945301} a^{4} + \frac{723476933535326948142038822770945797131669399367592910890}{1685356207139274100678095232511595610946672022838014660589} a^{3} - \frac{51797167541837444068319481969456000823042525147755360575}{798326624434392995058045110137071605185265695028533260279} a^{2} - \frac{4811911147970506691857246416483006897345006550986941690167}{15168205864253466906102857092604360498520048205542131945301} a - \frac{5847066578118334341643465637678988405430723481494896482189}{15168205864253466906102857092604360498520048205542131945301}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73335339822.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 9216 |
| The 88 conjugacy class representatives for t18n548 are not computed |
| Character table for t18n548 is not computed |
Intermediate fields
| 3.3.1129.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $101$ | 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.2 | $x^{4} - 101 x^{2} + 30603$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 1129 | Data not computed | ||||||