Normalized defining polynomial
\( x^{18} - 13 x^{16} + 50 x^{14} - 101 x^{12} + 339 x^{10} - 345 x^{8} + 629 x^{6} - 822 x^{4} + 346 x^{2} - 41 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26903925996047076599791616=2^{24}\cdot 7^{12}\cdot 41^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{20} a^{14} - \frac{1}{10} a^{12} - \frac{3}{10} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} - \frac{1}{2} a^{4} - \frac{1}{10} a^{2} - \frac{9}{20}$, $\frac{1}{40} a^{15} - \frac{1}{20} a^{13} - \frac{1}{8} a^{12} + \frac{7}{20} a^{11} + \frac{1}{8} a^{10} + \frac{2}{5} a^{9} + \frac{3}{8} a^{8} - \frac{2}{5} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{5} + \frac{3}{8} a^{4} - \frac{1}{20} a^{3} + \frac{1}{8} a^{2} + \frac{11}{40} a + \frac{3}{8}$, $\frac{1}{6192516200} a^{16} + \frac{1533628}{154812905} a^{14} - \frac{1}{8} a^{13} - \frac{1503726}{154812905} a^{12} + \frac{1}{8} a^{11} + \frac{1246348227}{3096258100} a^{10} + \frac{3}{8} a^{9} + \frac{1380699323}{3096258100} a^{8} + \frac{3}{8} a^{7} - \frac{137266794}{774064525} a^{6} + \frac{3}{8} a^{5} + \frac{267137561}{774064525} a^{4} + \frac{1}{8} a^{3} + \frac{2057955457}{6192516200} a^{2} + \frac{3}{8} a - \frac{29814287}{1548129050}$, $\frac{1}{6192516200} a^{17} + \frac{1533628}{154812905} a^{15} - \frac{1}{40} a^{14} - \frac{1503726}{154812905} a^{13} - \frac{3}{40} a^{12} + \frac{1246348227}{3096258100} a^{11} - \frac{9}{40} a^{10} + \frac{1380699323}{3096258100} a^{9} - \frac{1}{40} a^{8} - \frac{137266794}{774064525} a^{7} - \frac{9}{40} a^{6} + \frac{267137561}{774064525} a^{5} + \frac{1}{8} a^{4} + \frac{2057955457}{6192516200} a^{3} + \frac{7}{40} a^{2} - \frac{29814287}{1548129050} a + \frac{1}{10}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1312181.24671 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 192 conjugacy class representatives for t18n839 are not computed |
| Character table for t18n839 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.5.12657150016.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.12.18.48 | $x^{12} - 4 x^{11} - 4 x^{10} + 8 x^{9} - 4 x^{8} - 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{2} + 8$ | $4$ | $3$ | $18$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 7 | Data not computed | ||||||
| 41 | Data not computed | ||||||