Normalized defining polynomial
\( x^{18} - 6 x^{17} - 13 x^{16} + 250 x^{15} - 963 x^{14} - 532 x^{13} + 17244 x^{12} - 53770 x^{11} - 14136 x^{10} + 500498 x^{9} - 1071849 x^{8} - 549232 x^{7} + 6055735 x^{6} - 6621332 x^{5} - 14303083 x^{4} + 23745820 x^{3} + 26536272 x^{2} - 31151478 x - 24981067 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2688406910504947110220610513666048=2^{18}\cdot 37^{6}\cdot 97^{3}\cdot 16361^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 97, 16361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5529} a^{16} + \frac{1591}{5529} a^{15} + \frac{290}{5529} a^{14} + \frac{710}{5529} a^{13} - \frac{730}{1843} a^{12} - \frac{81}{1843} a^{11} - \frac{863}{1843} a^{10} - \frac{1642}{5529} a^{9} - \frac{2479}{5529} a^{8} + \frac{1061}{5529} a^{7} + \frac{18}{1843} a^{6} - \frac{657}{1843} a^{5} + \frac{2575}{5529} a^{4} + \frac{1889}{5529} a^{3} + \frac{340}{1843} a^{2} + \frac{2705}{5529} a + \frac{83}{291}$, $\frac{1}{7299329183851470106531850421381297871732408029837255769293} a^{17} - \frac{324932239700201759165200363320869931768747404683987363}{7299329183851470106531850421381297871732408029837255769293} a^{16} - \frac{92097499010771532186932040473632044147077860007183113327}{811036575983496678503538935709033096859156447759695085477} a^{15} - \frac{922785930518958768379550036448784348883111810561123842}{2804198687611014255294602543750018390984405697209856231} a^{14} - \frac{1482607796784024826674276111877783240761723721862838757648}{7299329183851470106531850421381297871732408029837255769293} a^{13} - \frac{356247567825279838792215173942404250993808639530546712428}{2433109727950490035510616807127099290577469343279085256431} a^{12} + \frac{818816895524333279480357656450598892910023310394230684775}{2433109727950490035510616807127099290577469343279085256431} a^{11} + \frac{1538003841425189734468393388004244671968237691179081242793}{7299329183851470106531850421381297871732408029837255769293} a^{10} + \frac{814334452767383763509318551042089606104809913625130070404}{7299329183851470106531850421381297871732408029837255769293} a^{9} - \frac{609733571215150907960565542140282569006325408418395412660}{7299329183851470106531850421381297871732408029837255769293} a^{8} + \frac{3570439809744829097667117293783511427082860921472331514544}{7299329183851470106531850421381297871732408029837255769293} a^{7} + \frac{46409914180219293674441682365522714661486374952819988860}{811036575983496678503538935709033096859156447759695085477} a^{6} - \frac{2320498162971503748772940709896785142560886175989908645175}{7299329183851470106531850421381297871732408029837255769293} a^{5} - \frac{827951659983766275422705393769188225002659620595686538874}{2433109727950490035510616807127099290577469343279085256431} a^{4} + \frac{1280151283255061732748353585635769723742377087545274381648}{7299329183851470106531850421381297871732408029837255769293} a^{3} + \frac{2069961812934425617512241724682549715688211830746225438148}{7299329183851470106531850421381297871732408029837255769293} a^{2} - \frac{3258483078372853186755901168124335498474243293343056407027}{7299329183851470106531850421381297871732408029837255769293} a - \frac{38856086003455659401515164234780728013367035974425939174}{384175220202708952975360548493752519564863580517750303647}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6338550802.67 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 130 conjugacy class representatives for t18n837 are not computed |
| Character table for t18n837 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.53038958912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 16361 | Data not computed | ||||||