Normalized defining polynomial
\( x^{18} - 2 x^{17} - 37 x^{16} + 4 x^{15} - 36 x^{14} + 2434 x^{13} - 1714 x^{12} + 8608 x^{11} - 16694 x^{10} + 35326 x^{9} - 1022016 x^{8} + 297560 x^{7} + 3842036 x^{6} + 2139914 x^{5} + 4488290 x^{4} - 3418788 x^{3} - 15652523 x^{2} - 6314160 x + 1380893 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2688406910504947110220610513666048=2^{18}\cdot 37^{6}\cdot 97^{3}\cdot 16361^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 97, 16361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{6} a^{11} - \frac{1}{4} a^{10} + \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{6} a^{7} + \frac{1}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{12} a^{4} + \frac{1}{3} a^{3} + \frac{5}{12} a^{2} + \frac{1}{12} a + \frac{5}{12}$, $\frac{1}{12} a^{15} + \frac{1}{12} a^{13} + \frac{1}{12} a^{11} - \frac{1}{6} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{1}{12} a^{7} - \frac{5}{12} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{6}$, $\frac{1}{2412} a^{16} + \frac{1}{201} a^{15} + \frac{13}{402} a^{14} - \frac{143}{2412} a^{13} - \frac{71}{1206} a^{12} + \frac{31}{402} a^{11} - \frac{13}{1206} a^{10} + \frac{65}{804} a^{9} - \frac{263}{1206} a^{8} + \frac{35}{603} a^{7} + \frac{10}{67} a^{6} - \frac{893}{2412} a^{5} + \frac{175}{603} a^{4} + \frac{157}{1206} a^{3} - \frac{146}{603} a^{2} - \frac{1079}{2412} a + \frac{319}{2412}$, $\frac{1}{34818993027568245329974947607758240769048108537387627205292} a^{17} + \frac{174961148414865361516180534625666915840651569343008366}{8704748256892061332493736901939560192262027134346906801323} a^{16} - \frac{34708168822832894552077346513157706631756864213669369120}{2901582752297353777497912300646520064087342378115635600441} a^{15} - \frac{1129474875438728569031726629378615403476942652500828932089}{34818993027568245329974947607758240769048108537387627205292} a^{14} - \frac{357456897631716382696368404131717472042755991166861533779}{11606331009189415109991649202586080256349369512462542401764} a^{13} - \frac{199307592429343289917326334168931926687860695659325501345}{17409496513784122664987473803879120384524054268693813602646} a^{12} - \frac{700243616563911893169371091904138747453229185144163950597}{17409496513784122664987473803879120384524054268693813602646} a^{11} - \frac{1897217340558071708853448386684429431664969722332219496969}{34818993027568245329974947607758240769048108537387627205292} a^{10} + \frac{5085804015589739783384267376402972796106060154164998944623}{34818993027568245329974947607758240769048108537387627205292} a^{9} - \frac{1170620118465512427588379492693331911227811264297288329302}{8704748256892061332493736901939560192262027134346906801323} a^{8} - \frac{1160580623724181014641895599831957955966281585642979879737}{17409496513784122664987473803879120384524054268693813602646} a^{7} + \frac{2659712328610286404987871211547639091643357743980344201013}{34818993027568245329974947607758240769048108537387627205292} a^{6} - \frac{5249820947909176921663537162025536183277089792830058627717}{34818993027568245329974947607758240769048108537387627205292} a^{5} - \frac{1860821583501283624330628757874599910365926570249475037661}{5803165504594707554995824601293040128174684756231271200882} a^{4} + \frac{53527038595272703055590886981134632954148664943501690903}{967194250765784592499304100215506688029114126038545200147} a^{3} - \frac{10429112348169174408728999507604939128417980650472454970283}{34818993027568245329974947607758240769048108537387627205292} a^{2} + \frac{1235421084973960271720948702786198522900529483282076312783}{17409496513784122664987473803879120384524054268693813602646} a - \frac{34498457063565105572455295808814158996696441012099169150}{512044015111297725440808053055268246603648654961582753019}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6670965194.78 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 130 conjugacy class representatives for t18n837 are not computed |
| Character table for t18n837 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.53038958912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 97 | Data not computed | ||||||
| 16361 | Data not computed | ||||||