Normalized defining polynomial
\( x^{18} + 198 x^{16} + 5364 x^{14} - 326895 x^{12} + 4224627 x^{10} - 15095475 x^{8} - 50757081 x^{6} + 300011094 x^{4} + 259354197 x^{2} - 893056347 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(262595950837791288870864493408730336314785792=2^{18}\cdot 3^{26}\cdot 11^{8}\cdot 107^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $293.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{1926} a^{14} - \frac{41}{642} a^{12} + \frac{61}{214} a^{10} + \frac{175}{642} a^{8} + \frac{101}{214} a^{6} + \frac{57}{214} a^{4} + \frac{241}{642} a^{2}$, $\frac{1}{1926} a^{15} - \frac{41}{642} a^{13} + \frac{61}{214} a^{11} + \frac{175}{642} a^{9} + \frac{101}{214} a^{7} + \frac{57}{214} a^{5} + \frac{241}{642} a^{3}$, $\frac{1}{1261858691339973894775731531102} a^{16} + \frac{94241572824872331803391151}{420619563779991298258577177034} a^{14} - \frac{6637851920805223179173316131}{140206521259997099419525725678} a^{12} + \frac{203506863030706285769472182581}{420619563779991298258577177034} a^{10} + \frac{22016419376460787056981829921}{46735507086665699806508575226} a^{8} + \frac{35859623498205547659059121049}{140206521259997099419525725678} a^{6} + \frac{176900795511348986898058891459}{420619563779991298258577177034} a^{4} - \frac{251458900273137477066226901}{655170660093444389810867877} a^{2} + \frac{876484705806188167661398}{2041030093749047943336037}$, $\frac{1}{3785576074019921684327194593306} a^{17} + \frac{52105298809336743623391185}{210309781889995649129288588517} a^{15} + \frac{15571828072291701649960032388}{210309781889995649129288588517} a^{13} - \frac{48608234976092344576858086481}{630929345669986947387865765551} a^{11} + \frac{52133773317416641954956391294}{210309781889995649129288588517} a^{9} - \frac{89190591176175383904547337365}{210309781889995649129288588517} a^{7} - \frac{65842292696331660351429939304}{630929345669986947387865765551} a^{5} + \frac{433103924078044793277755623}{1310341320186888779621735754} a^{3} + \frac{876484705806188167661398}{6123090281247143830008111} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6840462788390000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n662 are not computed |
| Character table for t18n662 is not computed |
Intermediate fields
| 3.3.321.1, 9.9.3177282828271761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.12.23.50 | $x^{12} - 9 x^{11} + 6 x^{9} + 9 x^{8} + 3 x^{6} + 9 x^{5} + 9 x^{4} + 3 x^{3} - 9 x^{2} + 9 x + 3$ | $12$ | $1$ | $23$ | $(C_6\times C_2):C_2$ | $[5/2]_{4}^{2}$ | |
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.12.8.2 | $x^{12} - 1331 x^{3} + 29282$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $107$ | 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 107.12.6.1 | $x^{12} + 14700516 x^{6} - 14025517307 x^{2} + 54026292666564$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |