Normalized defining polynomial
\( x^{18} - 6 x^{17} - 38 x^{16} + 235 x^{15} + 407 x^{14} - 1243 x^{13} - 10299 x^{12} - 3419 x^{11} + 125021 x^{10} + 81703 x^{9} - 677796 x^{8} - 505964 x^{7} + 1059178 x^{6} + 2300482 x^{5} + 1956448 x^{4} - 3708549 x^{3} - 6608342 x^{2} - 1299397 x + 890171 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2229465265050635102380004893016461=61^{5}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{549} a^{16} - \frac{16}{183} a^{15} + \frac{4}{183} a^{14} + \frac{220}{549} a^{13} - \frac{34}{549} a^{12} - \frac{272}{549} a^{11} - \frac{107}{549} a^{10} + \frac{1}{183} a^{9} - \frac{182}{549} a^{8} + \frac{1}{549} a^{7} + \frac{41}{549} a^{6} - \frac{20}{61} a^{5} + \frac{128}{549} a^{4} + \frac{1}{9} a^{3} - \frac{211}{549} a^{2} - \frac{220}{549} a + \frac{209}{549}$, $\frac{1}{2729278801167253689850229950954120128535765971578523} a^{17} - \frac{176841648062278075586836144146482161258960635385}{303253200129694854427803327883791125392862885730947} a^{16} - \frac{127643506627554265059963341870620244541308078513479}{909759600389084563283409983651373376178588657192841} a^{15} + \frac{129964447795490995311123436466722399719468569535712}{2729278801167253689850229950954120128535765971578523} a^{14} + \frac{812413797166638204869386467156533579338479196403801}{2729278801167253689850229950954120128535765971578523} a^{13} - \frac{22988740836131482539246988716011589623485462170721}{160545811833367864108837055938477654619750939504619} a^{12} - \frac{1089919328770755456219366590426579721606602901785498}{2729278801167253689850229950954120128535765971578523} a^{11} + \frac{378048184887631266349717969811879573824241275375748}{909759600389084563283409983651373376178588657192841} a^{10} + \frac{57579596178358719574621991281075479807516757620404}{160545811833367864108837055938477654619750939504619} a^{9} - \frac{388093967192054174517876343368368523858268863479210}{2729278801167253689850229950954120128535765971578523} a^{8} - \frac{7376693418301503553768993805394915852371886868612}{2729278801167253689850229950954120128535765971578523} a^{7} + \frac{34491914578399324070180464188597038376468463350656}{303253200129694854427803327883791125392862885730947} a^{6} - \frac{1107061285443195518605191254369864642438022367280896}{2729278801167253689850229950954120128535765971578523} a^{5} + \frac{714933414426566111213973522970256102543255166723955}{2729278801167253689850229950954120128535765971578523} a^{4} - \frac{241558815828552653433155878052946022937708725458838}{2729278801167253689850229950954120128535765971578523} a^{3} + \frac{556547986976658044109591202187085971103136635986}{44742275428971371964757868048428198828455179861943} a^{2} - \frac{527963914110459245463228493760667148942346337732334}{2729278801167253689850229950954120128535765971578523} a + \frac{508997383581128643003489646467396674474558511116}{17838423537040873789870783993164183846638993278291}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13495509984.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 9216 |
| The 88 conjugacy class representatives for t18n548 are not computed |
| Character table for t18n548 is not computed |
Intermediate fields
| 3.3.1129.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 1129 | Data not computed | ||||||