Normalized defining polynomial
\( x^{18} - 8 x^{17} + 19 x^{16} - 2 x^{15} - 62 x^{14} + 150 x^{13} - 268 x^{12} + 398 x^{11} + 68 x^{10} - 1458 x^{9} + 2610 x^{8} - 1638 x^{7} - 1014 x^{6} + 2354 x^{5} - 888 x^{4} - 462 x^{3} + 215 x^{2} - 6 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20435476561172359932503130112=2^{24}\cdot 37^{7}\cdot 227^{2}\cdot 499^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 227, 499$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{3}{8} a^{4} - \frac{3}{8} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{3}{8} a^{5} - \frac{3}{8} a^{3} - \frac{1}{8} a$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{3}{8}$, $\frac{1}{14218159940748317944} a^{17} + \frac{75048764922512271}{1777269992593539743} a^{16} - \frac{22460979513280987}{1777269992593539743} a^{15} + \frac{134677292960511117}{7109079970374158972} a^{14} - \frac{345919983443656123}{3554539985187079486} a^{13} - \frac{66253495513108059}{546852305413396844} a^{12} + \frac{190420062561789589}{7109079970374158972} a^{11} + \frac{50804419029074232}{1777269992593539743} a^{10} + \frac{68236979191506649}{273426152706698422} a^{9} - \frac{858270651721111857}{3554539985187079486} a^{8} + \frac{92237228109242601}{1777269992593539743} a^{7} - \frac{1117250653113904627}{7109079970374158972} a^{6} - \frac{575053680311505093}{3554539985187079486} a^{5} - \frac{3524865057009975457}{7109079970374158972} a^{4} + \frac{2516846744246918951}{7109079970374158972} a^{3} + \frac{323998179533734007}{3554539985187079486} a^{2} - \frac{4364900734564646021}{14218159940748317944} a + \frac{252514685061740923}{3554539985187079486}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39619176.3437 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 65 conjugacy class representatives for t18n773 are not computed |
| Character table for t18n773 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.367207505216.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 227 | Data not computed | ||||||
| 499 | Data not computed | ||||||