Normalized defining polynomial
\( x^{18} - 6 x^{17} + 18 x^{16} - 36 x^{15} - 70 x^{14} + 504 x^{13} - 772 x^{12} + 556 x^{11} - 1952 x^{10} + 3968 x^{9} + 1364 x^{8} - 9752 x^{7} + 5028 x^{6} + 5060 x^{5} - 4020 x^{4} - 704 x^{3} + 944 x^{2} - 40 x - 92 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(203294614766616380896416366592=2^{18}\cdot 13\cdot 19^{8}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{68} a^{16} + \frac{1}{68} a^{15} + \frac{5}{68} a^{14} - \frac{1}{17} a^{13} + \frac{3}{34} a^{12} + \frac{7}{34} a^{11} - \frac{3}{17} a^{10} - \frac{3}{17} a^{9} - \frac{7}{17} a^{8} - \frac{7}{34} a^{6} + \frac{5}{34} a^{5} - \frac{7}{17} a^{4} - \frac{7}{17} a^{3} + \frac{4}{17} a^{2} - \frac{8}{17} a - \frac{2}{17}$, $\frac{1}{6714780996980132675657644} a^{17} + \frac{22328085316566559147255}{6714780996980132675657644} a^{16} - \frac{89874736171241814849242}{1678695249245033168914411} a^{15} + \frac{223463849102904642376997}{3357390498490066337828822} a^{14} - \frac{275027515618608735926245}{3357390498490066337828822} a^{13} + \frac{117601110461736320688155}{1678695249245033168914411} a^{12} + \frac{212110025755254357698959}{1678695249245033168914411} a^{11} + \frac{200741772137530598457143}{3357390498490066337828822} a^{10} - \frac{376127514092957994699391}{1678695249245033168914411} a^{9} - \frac{1442719402524747953567691}{3357390498490066337828822} a^{8} - \frac{505195359278947823781175}{3357390498490066337828822} a^{7} + \frac{685045547227358979779958}{1678695249245033168914411} a^{6} + \frac{561147684261781068571828}{1678695249245033168914411} a^{5} + \frac{268209681151005297407581}{1678695249245033168914411} a^{4} + \frac{345932582711403990663336}{1678695249245033168914411} a^{3} + \frac{798897807613579730465603}{1678695249245033168914411} a^{2} + \frac{623303567475710616037997}{1678695249245033168914411} a + \frac{213642593154340325611546}{1678695249245033168914411}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 253649291.423 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 88 conjugacy class representatives for t18n656 are not computed |
| Character table for t18n656 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.62526089134336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | $18$ | $18$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 37 | Data not computed | ||||||