Normalized defining polynomial
\( x^{18} - 18 x^{16} - 99 x^{14} + 2481 x^{12} + 117 x^{10} - 81936 x^{8} + 161004 x^{6} + 27360 x^{4} - 35739 x^{2} - 6859 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1981841248485867753613659602681856=2^{18}\cdot 3^{32}\cdot 19^{3}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{9} a^{6} + \frac{1}{3} a^{4} + \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{1}{3} a^{5} + \frac{2}{9} a$, $\frac{1}{9} a^{8} + \frac{2}{9} a^{2} + \frac{1}{3}$, $\frac{1}{9} a^{9} + \frac{2}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{2}{9} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} + \frac{2}{9} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{81} a^{12} - \frac{1}{27} a^{10} + \frac{4}{81} a^{6} - \frac{2}{27} a^{4} + \frac{4}{9} a^{2} - \frac{23}{81}$, $\frac{1}{81} a^{13} - \frac{1}{27} a^{11} + \frac{4}{81} a^{7} - \frac{2}{27} a^{5} + \frac{4}{9} a^{3} - \frac{23}{81} a$, $\frac{1}{12312} a^{14} + \frac{5}{3078} a^{12} + \frac{25}{1026} a^{10} - \frac{635}{12312} a^{8} + \frac{383}{12312} a^{6} + \frac{1967}{4104} a^{4} - \frac{3821}{12312} a^{2} - \frac{25}{648}$, $\frac{1}{12312} a^{15} + \frac{5}{3078} a^{13} + \frac{25}{1026} a^{11} - \frac{635}{12312} a^{9} + \frac{383}{12312} a^{7} + \frac{1967}{4104} a^{5} - \frac{3821}{12312} a^{3} - \frac{25}{648} a$, $\frac{1}{142661213499456} a^{16} + \frac{3764240177}{142661213499456} a^{14} - \frac{2121653933}{990702871524} a^{12} - \frac{972762673919}{142661213499456} a^{10} - \frac{135368273033}{17832651687432} a^{8} + \frac{264275835905}{5944217229144} a^{6} + \frac{6876135972253}{35665303374864} a^{4} - \frac{37884502603}{1877121230256} a^{2} + \frac{34452655547}{131727805632}$, $\frac{1}{142661213499456} a^{17} + \frac{3764240177}{142661213499456} a^{15} - \frac{2121653933}{990702871524} a^{13} - \frac{972762673919}{142661213499456} a^{11} - \frac{135368273033}{17832651687432} a^{9} + \frac{264275835905}{5944217229144} a^{7} + \frac{6876135972253}{35665303374864} a^{5} - \frac{37884502603}{1877121230256} a^{3} + \frac{34452655547}{131727805632} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27079382469.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 48 conjugacy class representatives for t18n366 |
| Character table for t18n366 is not computed |
Intermediate fields
| 3.3.2349.1, \(\Q(\zeta_{9})^+\), 9.9.1049866478469.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.12.4 | $x^{12} - 6 x^{10} + 15 x^{8} - 20 x^{6} + 15 x^{4} - 38 x^{2} - 31$ | $2$ | $6$ | $12$ | 12T87 | $[2, 2, 2, 2, 2]^{6}$ | |
| $3$ | 3.9.16.12 | $x^{9} + 6 x^{8} + 3$ | $9$ | $1$ | $16$ | $S_3\times C_3$ | $[2, 2]^{2}$ |
| 3.9.16.12 | $x^{9} + 6 x^{8} + 3$ | $9$ | $1$ | $16$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 29.12.6.1 | $x^{12} + 146334 x^{6} - 20511149 x^{2} + 5353409889$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |