Normalized defining polynomial
\( x^{18} - 4 x^{17} - 15 x^{16} + 112 x^{15} - 237 x^{14} - 218 x^{13} + 3951 x^{12} - 9260 x^{11} + 1065 x^{10} + 34040 x^{9} - 117752 x^{8} + 111778 x^{7} + 296175 x^{6} - 522324 x^{5} - 685871 x^{4} + 19856 x^{3} + 139813 x^{2} + 430 x - 415 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1895620407887835340598231875000000=2^{6}\cdot 5^{10}\cdot 139^{5}\cdot 197^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 139, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{13} + \frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{3}{10} a^{10} - \frac{3}{10} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{3}{10} a^{6} - \frac{1}{5} a^{5} + \frac{1}{10} a^{4} + \frac{2}{5} a^{3} + \frac{3}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{14} + \frac{1}{5} a^{12} - \frac{1}{2} a^{11} + \frac{3}{10} a^{10} - \frac{2}{5} a^{8} - \frac{1}{2} a^{7} + \frac{1}{5} a^{6} - \frac{1}{2} a^{5} + \frac{1}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{10} a^{2}$, $\frac{1}{10} a^{15} + \frac{1}{10} a^{12} + \frac{1}{10} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{3}{10} a^{8} + \frac{2}{5} a^{7} - \frac{1}{10} a^{6} - \frac{2}{5} a^{5} + \frac{3}{10} a^{4} + \frac{1}{10} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{50} a^{16} + \frac{1}{50} a^{15} + \frac{1}{25} a^{14} - \frac{1}{50} a^{13} + \frac{6}{25} a^{12} + \frac{3}{10} a^{11} - \frac{1}{5} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} + \frac{1}{10} a^{7} + \frac{13}{50} a^{6} + \frac{3}{50} a^{5} - \frac{2}{25} a^{4} - \frac{13}{50} a^{3} + \frac{3}{25} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{6172482227613898867497778479411034525039701350} a^{17} + \frac{4750220806587940198483666744825870953619259}{1234496445522779773499555695882206905007940270} a^{16} - \frac{203052319657293275234458489830126423024444629}{6172482227613898867497778479411034525039701350} a^{15} + \frac{136128745443614086850897498534906889985965011}{3086241113806949433748889239705517262519850675} a^{14} - \frac{83864970980273599171172169034905538130693377}{6172482227613898867497778479411034525039701350} a^{13} - \frac{473782964158101614475610518427158713281701001}{3086241113806949433748889239705517262519850675} a^{12} + \frac{285207037708153264348542393843942234758249028}{617248222761389886749777847941103452503970135} a^{11} + \frac{34401056420679860051832730625292514347450427}{176356635074682824785650813697458129286848610} a^{10} + \frac{209683447544139150294798836437213624248871501}{617248222761389886749777847941103452503970135} a^{9} - \frac{39576960301916348164000488185847553769559568}{88178317537341412392825406848729064643424305} a^{8} + \frac{577439933135986061920653827049654388733820339}{3086241113806949433748889239705517262519850675} a^{7} - \frac{519789518688944596394117701278752571563139623}{1234496445522779773499555695882206905007940270} a^{6} - \frac{945381692077070727349384819664165411030436407}{6172482227613898867497778479411034525039701350} a^{5} + \frac{2460344232935489275778689997555996971614410711}{6172482227613898867497778479411034525039701350} a^{4} + \frac{217126965025630449017198997581271886253110211}{440891587686707061964127034243645323217121525} a^{3} + \frac{443515759444879814541769944538319150760246877}{3086241113806949433748889239705517262519850675} a^{2} - \frac{487979379131955595401257033005873833028234763}{1234496445522779773499555695882206905007940270} a - \frac{60028921350276495750659323406130681922806047}{617248222761389886749777847941103452503970135}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49045472255.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 168 conjugacy class representatives for t18n835 are not computed |
| Character table for t18n835 is not computed |
Intermediate fields
| 3.3.985.1, 9.9.92322657333125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 139 | Data not computed | ||||||
| $197$ | $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |